Question 9.18: The impedances at standstill of the inner and outer cages of...

The impedances at standstill of the inner and outer cages of a double-cage rotor are (0.01 + j 0.5) \Omega and (0.05 + j 0.1) \Omega  respectively. The stator impedance may be assumed to be negligible. Calculate the ratio of the torques due to the two cages (i) at starting, and (ii) when running with a slip of 5%.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. (9.31) T_{ start }=\frac{3}{\omega_{s}} \cdot \frac{V^{2} R_{2}^{\prime}}{R_{2}^{\prime 2}+X_{2}^{\prime 2}} (as seen on the rotor side)

 

T_{s}=\frac{3}{\omega_{s}} \cdot \frac{V^{\prime 2} R_{2}^{2}}{R_{2}^{2}+X_{2}^{2}}

Where  V^{\prime} = rotor induced emf

Substituting values

T_{s o}=\frac{3}{\omega_{s}} \cdot \frac{V^{\prime 2}(0.05)}{(0.05)^{2}+(0.1)^{2}}

 

T_{s i}=\frac{3}{\omega_{s}} \cdot \frac{V^{\prime 2}(0.01)}{(0.01)^{2}+(0.5)^{2}}

 

\therefore                                                                              \frac{T_{s o}}{T_{s i}}=\frac{(0.01)^{2}+(0.5)^{2}}{(0.05)^{2}+(0.1)^{2}} \times\left(\frac{0.05}{0.01}\right)=100

From Eq. (9.28) T=\frac{3}{\omega_{s}} \cdot \frac{V^{2}\left(R_{2}^{\prime} / s\right)}{\left(R_{2}^{\prime} / s\right)^{2}+X_{2}^{\prime 2}}  (as seen on the rotor side)

T=\frac{3}{\omega_{s}} \cdot \frac{V^{\prime 2}\left(R_{2} / s\right)}{\left(R_{2} / s\right)^{2}+X_{2}^{2}}

Substituting values

T_{0}=\frac{3}{\omega_{s}} \cdot \frac{V^{\prime 2}(0.05 / 0.05)}{(0.05 / 0.05)^{2}+(0.1)^{2}}

 

T_{i}=\frac{3}{\omega_{s}} \cdot \frac{V^{\prime 2}(0.01 / 0.05)}{(0.01 / 0.05)^{2}+(0.3)^{2}}

 

\therefore                                                                \frac{T_{0}}{T_{i}}=\frac{(0.01 / 0.05)^{2}+(0.5)^{2}}{(0.05 / 0.05)^{2}+(0.1)^{2}} \times \frac{0.05}{0.01}=1.436

Remark The outer cage contributes 100 times more torque than the inner cage at starting while it contributes only 1.436 times during running.

Related Answered Questions