Question 9.20: The results of the no-load and blocked-rotor tests on a 3-ph...

The results of the no-load and blocked-rotor tests on a 3-phase, Y-connected 10 kW, 400 V, 17 A, 50 Hz, 8 pole induction motor with a squirrel-cage rotor are given below.

No-load test:                        Line to line voltage = 400 V

Total input power = 467 W

Line current = 6.8 A

Blocked rotor test:                        Line to line voltage = 180 V

Total input power = 1200 W

Line current = 17 A

The dc resistance of the stator measured immediately after the blocked rotor test is found to have an average value of 0.68 ohm/phase.

Calculate the parameters of the circuit model of the induction motor. Draw IEEE circuit model.

Using MATLAB calculate and plot against motor speed or slip the following variables:

(i) Torque (net)

(ii) Stator current

(iii) Power factor

(iii) Power factor

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

No-Load Test

Y_{0}=\frac{6.8}{400 / \sqrt{3}}=0.0294 \mho

 

G_{i w f}=\frac{467-3(6.8)^{2} \times 0.68}{(400)^{2}}=2.33 \times 10^{-3} \mho

 

B_{m}=\sqrt{Y_{0}^{2}-G_{i w f}^{2}}=2.93 \times 10^{-2} \mho

 

X_{m}=34.12 \Omega

The IEEE circuit model is given in the Fig. 9.68 (c).

Blocked-Rotor Test

Z=\frac{180 / \sqrt{3}}{17}=6.113 \Omega

 

R=\frac{1200 / 3}{(17)^{2}}=1.384 \Omega

 

X=\sqrt{Z^{2}-R^{2}}=5.95 \Omega

 

R=R_{1}+R_{2}^{\prime}

 

R_{2}^{\prime}=1.384-0.68=0.704 \Omega

 

X_{1}=X_{2}^{\prime}=\frac{X}{2}=2.975 \Omega

 

Performance Calculation

s = 0.05

\bar{Z}_{f}=\left(\frac{R_{2}^{\prime}}{s}+j X_{2}\right) \|\left(j X_{m}\right)

 

=\left(\frac{0.704}{0.05}+j 2.975\right) \|(j 34.12)

 

=(14.08+j 2.975) \|(j 34.12)

 

=\frac{14.39 \angle 11.9^{\circ} \times 34.12 \angle 90^{\circ}}{39.677 \angle 69.2^{\circ}}

 

=12.375 \angle 32.7^{\circ}

 

= 10.414 + j 6.685

 

\bar{Z}_{(\text {total })}=0.68+j 2.975+10.414+j 6.685

 

\simeq 14.7 \angle 41.3^{\circ} \Omega

 

|\bar{Z}|_{\text {(total) }}=14.7 \Omega

 

(a) Stator Current

I_{1}=\frac{400}{\sqrt{3} \times 14.7}=15.69 A

(b) Power Factor

p f=\cos \left(14.3^{\circ}\right)=0.751 (lagging)

(c) Efficiency`

Power input  =3 V_{p h} I_{p h} \cos \phi

 

=3\left(\frac{400}{\sqrt{3}}\right) \times 15.69 \times 0.751=8163.4 W

 

Air-gap power =3 I_{1}^{2} R_{f}=3(15.69)^{2} \times 10.374=7661.5 W

 

\omega_{s}=\frac{120 f}{P}=750 rpm

 

P_{m}(\text { gross })=(1-s) P_{g}=0.95 \times 7661.5=7278.4 W

 

P_{m}(\text { net })=P_{m}(\text { gross })-P_{r}

 

Where                               Pm (net) = Pm (gross) – Pr

P_{r}=P_{0}-3 I_{0}^{2} R_{1}=372 W

(d) Torque

\omega=\omega_{s}(1-s)=750 \times 0.95=712 rpm

 

T_{(\text {net })}=\frac{P_{m(\text { net })}}{\omega}=\frac{6906.4}{712}=9.7 Nm

Efficiency  =\frac{P_{m(n e t)}}{P_{\text {input }}}=\frac{6906.4}{8163.4}=0.846

% Efficiency = 84.6%

9 20

Related Answered Questions