Products
Rewards 
from HOLOOLY

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

HOLOOLY 
BUSINESS MANAGER

Advertise your business, and reach millions of students around the world.

HOLOOLY 
TABLES

All the data tables that you may search for.

HOLOOLY 
ARABIA

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

HOLOOLY 
TEXTBOOKS

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

HOLOOLY 
HELP DESK

Need Help? We got you covered.

Chapter 4

Q. 4.13

The shaft of an overhang crank subjected to a force P of 1 kN is shown in Fig. 4.40(a). The shaft is made of plain carbon steel 45C8 and the tensile yield strength is 380 N/mm². The factor of safety is 2. Determine the diameter of the shaft using the maximum shear stress theory.

Step-by-Step

Verified Solution

Given P = 1 kN           S_{y t}=380 N / mm ^{2} \quad(f s)=2 .

Step I Calculation of permissible shear stress
According to maximum shear stress theory,

S_{s y}=0.5 S_{y t}=0.5(380)=190 N / mm ^{2} .

The permissible shear stress is given by,

\tau_{\max }=\frac{S_{s y}}{(f s)}=\frac{190}{2}=95 N / mm ^{2}           (i).

Step II Calculation of bending and torsional shear stresses
The stresses are critical at the point A, which is subjected to combined bending and torsional moments.
At the point A,

M_{b}= P \times(250)=(1000)(250)=250 \times 10^{3} N – mm .

M_{t}= P \times(500)=(1000)(500)=500 \times 10^{3} N – mm .

\sigma_{b}=\frac{M_{b} y}{I}=\frac{\left(250 \times 10^{3}\right)(d / 2)}{\left(\pi d^{4} / 64\right)} .

=\left(\frac{2546.48 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

\tau=\frac{M_{t} r}{J}=\frac{\left(500 \times 10^{3}\right)(d / 2)}{\left(\pi d^{4} / 32\right)} .

=\left(\frac{2546.48 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

Step III Calculation of maximum shear stress
The stresses at point A and corresponding Mohr’s circle are shown in Fig. 4.40(b) and (c) respectively.
In these figures,

\sigma_{x}=\sigma_{b}=\left(\frac{2546.48 \times 10^{3}}{d^{3}}\right) N / mm ^{2} \quad \sigma_{z}=0 .

\tau=\tau_{x z}=\tau_{z x}=\left(\frac{2546.48 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

From Mohr’s circle,

\tau_{\max .}=\sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2}+\left(\tau_{x z}\right)^{2}} .

=\left[\sqrt{\left(\frac{2546.48}{2 d^{3}}\right)^{2}+\left(\frac{2546.48}{d^{3}}\right)^{2}}\right] \times 10^{3} .

=\frac{2847.05 \times 10^{3}}{d^{3}}           (ii).

Step IV Calculation of shaft diameter
Equating (i) and (ii),

\frac{2847.05 \times 10^{3}}{d^{3}}=95 \quad \therefore d=31.06 mm .