Question 14.16: CALCULATING THE pH OF A BASIC SALT SOLUTION Calculate the pH...

CALCULATING THE pH OF A BASIC SALT SOLUTION

Calculate the pH of a 0.10 M solution of NaCN; K_{a} for HCN is 4.9 × 10^{-10}.

STRATEGY
Use the procedure summarized in Figure 14.6.

fig 14.66
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1. The species present initially are Na^{+} (inert),  CN^{-}(base), and H_{2}O (acid or base).

Step 2. There are two possible proton-transfer reactions:

CN^{-}(aq)  +  H_{2}O(l)  \rightleftharpoons  HCN(aq)  +  OH^{-}(aq)           K_{b}

H_{2}O(l)  +  H_{2}O(l)  \rightleftharpoons  H_{3}O^{+}(aq)  +  OH^{-}(aq)                K_{w}

  Step 3. As shown in Worked Example 14.14b, K_{b}  =  K_{w}/(K_{a}  for  HCN) = 2.0 × 10^{-5}.
Because K_{b}  >>  K_{w}  ,  CN^{-} is a stronger base than H_{2}O and the principal reaction is proton transfer from H_{2}O  to  CN^{-}.

Step 4.

Step 5. The value of x is obtained from the equilibrium equation:

K_{b}  =  2.0  ×  10^{-5}  =  \frac{[HCN][OH^{-}]}{[CN^{-}]}  =  \frac{(x)(x)}{(0.10  –  x)}  ≈  \frac{x^{2}}{0.10}

x = [OH^{-}]  =  1.4  ×  10^{-3} M

Step 7.  [H_{3}O^{+}]  =  \frac{K_{w}}{[OH^{-}]}  =  \frac{1.0  ×  10^{-14}}{1.4  ×  10^{-3}}  =  7.1  ×  10^{-12}

Step 8.  pH = -log (7.1 × 10^{-12}) = 11.15

The solution is basic, which agrees with the color of the indicator in Figure 14.8.

Principal reaction                                        CN^{-}(aq)  +  H_{2}O(l)  \rightleftharpoons  HCN(aq)  +  OH^{-}(aq)
Equilibrium concentration (M)                     0.10 – x                                     x                          x
fig 14.88

Related Answered Questions

Question: 14.15

Verified Answer:

Steps 1–4. The species present initially are [late...