Question 2.7: Using Capillary Rise to Generate Power in a Hydraulic Turbin...

Using Capillary Rise to Generate Power in a Hydraulic Turbine

Reconsider Example 2–6. Realizing that water rises by 5 cm under the influence of surface tension without requiring any energy input from an external source, a person conceives the idea that power can be generated by drilling a hole in the tube just below the water level and feeding the water spilling out of the tube into a turbine (Fig. 2–40). The person takes this idea even further by suggesting that a series of tube banks can be used for this purpose and cascading can be incorporated to achieve practically feasible flow rates and elevation differences. Determine if this idea has any merit.

2.40
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Water that rises in tubes under the influence of the capillary effect is to be used to generate power by feeding it into a turbine. The validity of this suggestion is to be evaluated.
Analysis   The proposed system may appear like a stroke of genius, since the commonly used hydroelectric power plants generate electric power by simply capturing the potential energy of elevated water, and the capillary rise provides the mechanism to raise the water to any desired height without requiring any energy input.
When viewed from a thermodynamic point of view, the proposed system immediately can be labeled as a perpetual motion machine (PMM) since it continuously generates electric power without requiring any energy input. That is, the proposed system creates energy, which is a clear violation of the first law of thermodynamics or the conservation of energy principle, and it does not warrant any further consideration. But the fundamental principle of conservation of energy did not stop many from dreaming about being the first to prove nature wrong, and to come up with a trick to permanently solve the world’s energy problems. Therefore, the impossibility of the proposed system should be demonstrated.
As you may recall from your physics courses (also to be discussed in the next chapter), the pressure in a static fluid varies in the vertical direction only and increases with increasing depth linearly. Then the pressure difference across the 5-cm-high water column in the tube becomes

\Delta P_{water  column  in  tube} = P_2 – P_1 = \rho _{water}gh

= (1000  kg/m^2)(9.81  m/s^2)(0.05  m)\left(\frac{1  kN}{1000  kg.m/s^2} \right)
= 0.49  kN/m^2 ( \approx 0.005  atm)

That is, the pressure at the top of the water column in the tube is 0.005 atm less than the pressure at the bottom. Noting that the pressure at the bottom of the water column is atmospheric pressure (since it is at the same horizontal line as the water surface in the cup) the pressure anywhere in the tube is below atmospheric pressure with the difference reaching 0.005 atm at the top. Therefore, if a hole were drilled at some elevation in the tube, the top of the meniscus would fall until its elevation was the same as that of the hole.
Discussion   The water column in the tube is motionless, and thus, there cannot be any unbalanced force acting on it (zero net force). The force due to the pressure difference across the meniscus between the atmospheric air and the water at the top of water column is balanced by the surface tension. If this surface-tension force were to disappear, the water in the tube would drop down under the influence of atmospheric pressure to the level of the free surface in the tube.

Related Answered Questions