Question 15.13: Regulation and Efficiency Calculations Find the percentage r...

Regulation and Efficiency Calculations
Find the percentage regulation and power efficiency for the transformer of Table 15.1 for a rated load having a lagging power factor of 0.8.

Table 15.1. Circuit Values of a 60-Hz 20-kVA 2400/240-V Transformer Compared with Those of an Ideal Transformer

Element Name

Symbol

Ideal

Real

Primary resistance

R_1

0

3.0 ~\Omega

Secondary resistance

R_2

0

0.03 ~\Omega

Primary leakage reactance

X_1 =\omega L_1

0

6.5~\Omega

Secondary leakage reactance

X_2=\omega L_2

0

0.07~\Omega

Magnetizing reactance

X_m=\omega L_m

\infty

15~\Omega

Core-loss resistance

R_c

\infty

100~\Omega

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, we draw the circuit as shown in Figure 15.30. Notice that we have placed the magnetizing reactance Xm and core loss resistance Rc on the left-hand side of R1 and X1, because this makes the calculations a bit simpler and is sufficiently accurate. We assume a zero phase reference for the load voltage. It is customary in power-system engineering to take the values of phasors as the rms values (rather than the peak values) of the currents and voltages. Thus, as a phasor, we have

\mathrm{V_{load}}=240\angle 0^\circ \mathrm{~V~rms}  

For rated load (20 kVA), the load current is

I_2=\frac{20\mathrm{~kVA}}{240\mathrm{~V}}=83.33\mathrm{~A~rms}

The load power factor is

\mathrm{power~factor}=\cos{(\theta)}=0.8

Solving, we find that

\theta =36.87^\circ

Thus, the phasor load current is

\mathrm{I}_2 =83.33 \angle -36.87^\circ\mathrm{~A~rms}

where the phase angle is negative because the load was stated to have a lagging power factor.
The primary current is related to the secondary current by the turns ratio:

\mathrm{I}_1=\frac{N_2}{N_1}\mathrm{I}_2=\frac{1}{10}\times 83.33 \angle -36.87^\circ =8.333\angle -36.87^\circ \mathrm{~A~rms}

Next, we can compute the voltages:

\mathrm{V}_2=\mathrm{V_{load}}+(R_2+jX_2) \mathrm{I}_2

\\=240+(0.03+j0.07)83.33\angle -36.87^\circ \\=240+6.345\angle 29.93^\circ=245.50+j3.166\mathrm{~V~rms}

The primary voltage is related to the secondary voltage by the turns ratio:

\mathrm{V}_1=\frac{N_1}{N_2}\mathrm{V}_2=10\times (245.50+j3.166)\\=2455.0+j31.66\mathrm{~V~rms}

Now, we can compute the source voltage:

\mathrm{V}_s=\mathrm{V}_1+(R_1+jX_1) \mathrm{I}_1

\\=2455.0+j31.66+(3+j6.5)\times (8.333\angle -36.87^\circ)\\=2508.2\angle 1.37^\circ \mathrm{~V~rms}

Next, we compute the power loss in the transformer:

P_{\mathrm{loss}}=\frac{V^2_s}{R_c}+I^2_1R_1+I_2^2R_2\\=62.91+208.3+208.3\\=479.5\mathrm{~W}

The power delivered to the load is given by

P_{\mathrm{load}}=V_{\mathrm{load}}I_2\times \mathrm{power~factor}\\=20\mathrm{~kVA}\times 0.8=16,000\mathrm{~W}

The input power is given by

P_{\mathrm{in}}=P_{\mathrm{load}}+P_{\mathrm{loss}}\\=16,000+479.5=16,479.5\mathrm{~W}

At this point, we can compute the power efficiency:

\mathrm{efficiency}=\left( 1-\frac{P_{\mathrm{loss}}}{P_{\mathrm{in}}} \right)\times 100\% \\= \left( 1-\frac{ 479.5}{16,479.5 } \right) \times 100\% =97.09\%

Next, we can determine the no-load voltages. Under no-load conditions, we have

I_1=I_2=0

\\V_1=V_s=2508.2

\\V_{\mathrm{no-load}}=V_2=V_1\frac{N_2}{N_1}=250.82\mathrm{~V~rms}

Finally, the percentage regulation is

percent regulation =\frac{ V_{\mathrm{no-load}}- V_{\mathrm{load}}}{ V_{\mathrm{load}}}\times 100\%\\=\frac{250.82-240}{240}\times 100\%\\=4.51\%

15.30

Related Answered Questions

Question: 15.12

Verified Answer:

The voltage is reflected by using the turns ratio....
Question: 15.7

Verified Answer:

In Example 15.5, we found that the reluctance of t...