Question 4.CA.11: For the bar of Concept Application 4.10, determine the large......

For the bar of Concept Application 4.10, determine the largest tensile and compressive stresses, knowing that the bending moment in the bar is M = 8 kip⋅in.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use Eq. (4.71) with the given data

\sigma_x=\frac{M(r-R)}{A e r}             (4.71)

M = 8 kip·in.             A = bh = (2.5 in.)(1.5 in.) = 3.75 in²

and the values obtained in Concept Application 4.10 for R and e:

R = 5.969              e = 0.0314 in.

First using r=r_2=6.75 in. in Eq. (4.71), write

\begin{aligned} \sigma_{\max } & =\frac{M\left(r_2-R\right)}{A{e r_2}} \\ & =\frac{(8  kip \cdot in .)(6.75  in . -5.969  in.}{\left(3.75  in ^2\right)(0.0314  in .)(6.75  in .)} \\ & =7.86  ksi \end{aligned}

Now using r=r_1=5.25 in. in Eq. (4.71),

\begin{aligned} \sigma_{\min } & =\frac{M\left(r_1-R\right)}{\operatorname{Aer}_1} \\ & =\frac{(8  kip \cdot in .)(5.25 \text {  in. }-5.969 \text {  in. })}{\left(3.75 \text {  in }^2\right)(0.0314 \text {  in. })(5.25 \text {  in. })} \\ & =-9.30  ksi \end{aligned}

Remark. Compare the values obtained for \sigma_{\max } \text { and } \sigma_{\min } with the result for a straight bar. Using Eq. (4.15) of Sec. 4.2,

\sigma_m=\frac{M c}{I}              (4.15)

\begin{aligned} \sigma_{\max , \min } & =\pm \frac{M c}{I} \\ & =\pm \frac{(8  kip \cdot in .)(0.75  in .)}{\frac{1}{12}(2.5  in .)(1.5  in .)^3}=\pm 8.53  ksi \end{aligned}

Related Answered Questions