Question 8.SP.3: The solid shaft AB rotates at 480 rpm and transmits 30 kW fr......

The solid shaft AB rotates at 480 rpm and transmits 30 kW from the motor M to machine tools connected to gears G and H; 20 kW is taken off at gear G and 10 kW at gear H. Knowing that \tau_{\text {all }}=50  MPa , determine the smallest permissible diameter for shaft AB.

STRATEGY: After determining the forces and couples exerted on the shaft, you can obtain its bending-moment and torque diagrams. Using these diagrams to aid in identifying the critical transverse section, you can then determine the required shaft diameter.

43
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

MODELING: Draw the free-body diagram of the shaft and gears (Fig. 1).
Observing that f = 480 rpm = 8 Hz, the torque exerted on gear E is

T_E=\frac{P}{2 \pi f}=\frac{30  kW }{2 \pi(8  Hz )}=597  N \cdot m

The corresponding tangential force acting on the gear is

F_E=\frac{T_E}{r_E}=\frac{597  N \cdot m }{0.16  m }=3.73  kN

A similar analysis of gears C and D yields

\begin{array}{ll} T_C=\frac{20  kW }{2 \pi(8  Hz )}=398  N \cdot m & F_C=6.63  kN \\ \\ T_D=\frac{10  kW }{2 \pi(8  Hz )}=199  N \cdot m & F_D=2.49  kN \end{array}

Now replace the forces on the gears by equivalent force-couple systems as shown in Fig. 2.

ANALYSIS:
Bending-Moment and Torque Diagrams (Fig. 3)

Critical Transverse Section. By computing \sqrt{M_y^2+M_z^2+T^2} at all potentially critical sections (Fig. 4), the maximum value occurs just to the right of D:

\left(\sqrt{M_y^2+M_z^2+T^2}\right)_{\max }=\sqrt{(1160)^2+(373)^2+(597)^2}=1357  N \cdot m

Diameter of Shaft. For \tau_{\text {all }}=50 MPa, Eq. (7.32) yields

\sigma_1=2 \sigma_2               (7.32)

\frac{J}{c}=\frac{\left(\sqrt{M_y^2+M_z^2+T^2}\right)_{\max }}{\tau_{\text {all }}}=\frac{1357  N \cdot m }{50  MPa }=27.14 \times 10^{-6}  m ^3

For a solid circular shaft of radius c,

\frac{J}{c}=\frac{\pi}{2} c^3=27.14 \times 10^{-6} \quad c=0.02585  m =25.85  mm

Diameter = 2c = 51.7 mm

44
45
46
47

Related Answered Questions