For the uniform beam and loading shown, determine (a) the reaction at each support, (b) the slope at end A.
STRATEGY: The beam is statically indeterminate to the first degree. Strategically selecting the reaction at B as the redundant, you can use the method of superposition to model the given problem by using a summation of load cases for which deflection formulae are readily available.
MODELING: The reaction R _B is selected as redundant and considered as an unknown load. Applying the principle of superposition, the deflections due to the distributed load and to the reaction R _B are considered separately as shown in Fig. 1.
ANALYSIS: For each loading case, the deflection at point B is found by using the table of Beam Deflections and Slopes in Appendix F.
Distributed Loading. Use case 6, Appendix F:
y=-\frac{w}{24 E I}\left(x^4-2 L x^3+L^3 x\right)
At point B, x=\frac{2}{3} L :
\left(y_B\right)_w=-\frac{w}{24 E I}\left[\left(\frac{2}{3} L\right)^4-2 L\left(\frac{2}{3} L\right)^3+L^3\left(\frac{2}{3} L\right)\right]=-0.01132 \frac{w L^4}{E I}
Redundant Reaction Loading. From case 5, Appendix F, with a=\frac{2}{3} L and b=\frac{1}{3} L ,
\left(y_B\right)_R=-\frac{P a^2 b^2}{3 E I L}=+\frac{R_B}{3 E I L}\left(\frac{2}{3} L\right)^2\left(\frac{L}{3}\right)^2=0.01646 \frac{R_B L^3}{E I}
a. Reactions at Supports. Recalling that y_B=0 ,
\begin{aligned} y_B & =\left(y_B\right)_w+\left(y_B\right)_R \\ 0 & =-0.01132 \frac{w L^4}{E I}+0.01646 \frac{R_B L^3}{E I} \quad R _B=0.688 w L \uparrow \end{aligned}
Since the reaction R_B is now known, use the methods of statics to determine the other reactions (Fig. 2):
R _A=0.271 w L \uparrow \quad R _C=0.0413 w L \uparrow
b. Slope at End A. Referring again to Appendix F,
Distributed Loading. \left(\theta_A\right)_w=-\frac{w L^3}{24 E I}=-0.04167 \frac{w L^3}{E I}
Redundant Reaction Loading. For P=-R_B=-0.688 w L \text { and } b=\frac{1}{3} L ,
\begin{aligned} \left(\theta_A\right)_R & =-\frac{P b\left(L^2-b^2\right)}{6 E I L}=+\frac{0.688 w L}{6 E I L}\left(\frac{L}{3}\right)\left[L^2-\left(\frac{L}{3}\right)^2\right] \\ & =0.03398 \frac{w L^3}{E I} \end{aligned}
Finally,
\begin{aligned} & \theta_A=\left(\theta_A\right)_w+\left(\theta_A\right)_R \\ & =-0.04167 \frac{w L^3}{E I}+0.03398 \frac{w L^3}{E I}=-0.00769 \frac{w L^3}{E I} \\ & \theta_A=0.00769 \frac{w L^3}{E I} ⦪ \end{aligned}