Question 10.SP.7: A steel column with an effective length of 16 ft is loaded e......

A steel column with an effective length of 16 ft is loaded eccentrically as shown. Using the interaction method, select the wide-flange shape of 8-in. nominal depth that should be used. Assume E=29 \times 10^6 \text {  psi and } \sigma_Y=36 ksi, and use an allowable stress in bending of 22 ksi.

STRATEGY: It is necessary to select the lightest column that satisfies Eq. (l0.57). This involves a trial-and-error process, which can be shortened if the first 8-in. wide-flange shape selected is close to the final solution. This is done by using the allowable-stress method, Eq. (10.55), with an approximate allowable stress.

\frac{P}{A}+\frac{M c}{I} \leq \sigma_{\text {all }}          (10.55)

\frac{P / A}{\left(\sigma_{\text {all }}\right)_{\text {centric }}}+\frac{M c / I}{\left(\sigma_{\text {all }}\right)_{\text {bending }}} \leq 1              (10.57)

126
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

MODELING and ANALYSIS:
So that we can select a trial section, we use the allowable-stress method with \sigma_{\text {all }}=22  ksi and write

\sigma_{\text {all }}=\frac{P}{A}+\frac{M c}{I_x}=\frac{P}{A}+\frac{M c}{A r_x^2}              (1)

From Appendix E, we observe that for shapes of 8-in. nominal depth c \approx 4 \text {  in. and } r_x \approx 3.5 \text {  in } . Using Fig. 1 and substituting into Eq. (1),

22 ksi =\frac{85  kips }{A}+\frac{(425  kip \cdot in .)(4 \text {  in. })}{A(3.5  in .)^2} \quad A \approx 10.2  in ^2

For a first trial shape, select W8 × 35.

Trial 1: W8 × 35 (Fig. 2). The allowable stresses are

Allowable Bending Stress: (see data)          \left(\sigma_{\text {all }}\right)_{\text {bending }}=22  ksi

Allowable Concentric Stress: The largest slenderness ratio of the column is L / r_y = (192 in.)∕(2.03 in.) = 94.6. Using Eq. (10.41) with E=29 \times 10^6  psi \text { and } \sigma_Y=36 ksi, the slenderness ratio at the junction between the two equations for \sigma_{ cr } \text { is } L / r = 133.7. Thus, use Eqs. (10.38) and (10.39) and find \sigma_{ cr }=22.5 ksi. Using Eq. (10.42), the allowable stress is

\sigma_{ cr }=\left[0.658^{\left(\sigma_\gamma / \sigma_c\right)}\right] \sigma_Y             (10.38)

\sigma_e=\frac{\pi^2 E}{(L / r)^2}             (10.39)

\frac{L}{r}=4.71 \sqrt{\frac{E}{\sigma_Y}}           (10.41)

\sigma_{ all }=\frac{\sigma_{ cr }}{1.67}            (10.42)

\left(\sigma_{\text {all }}\right)_{\text {centric }}=22.5 / 1.67=13.46  ksi

For the W8 × 35 trial shape,

\frac{P}{A}=\frac{85  kips }{10.3 in ^2}=8.25  ksi \quad \frac{M c}{I}=\frac{M}{S_x}=\frac{425  kip \cdot in .}{31.2  in ^3}=13.62  ksi

With this data, the left-hand member of Eq. (10.57) is

\frac{P / A}{\left(\sigma_{\text {all }}\right)_{\text {centric }}}+\frac{M c / I}{\left(\sigma_{\text {all }}\right)_{\text {bending }}}=\frac{8.25  ksi }{13.46  ksi }+\frac{13.62  ksi }{22  ksi }=1.232

Since 1.232 > 1.000, the requirement expressed by the interaction formula is not satisfied. Select a larger trial shape.

Trial 2: W8 × 48 (Fig. 3). Following the procedure used in trial 1 gives

\begin{gathered} \frac{L}{r_y}=\frac{192 in. }{2.08 in. }=92.3 \quad\left(\sigma_{\text {all }}\right)_{\text {centric }}=13.76  ksi \\ \frac{P}{A}=\frac{85  kips }{14.1  in ^2}=6.03  ksi \quad \frac{M c}{I}=\frac{M}{S_x}=\frac{425  kip \cdot in .}{43.2  in ^3}=9.84  ksi \end{gathered}

Substituting into Eq. (10.57) gives

\frac{P / A}{\left(\sigma_{\text {all }}\right)_{\text {centric }}}+\frac{M c / I}{\left(\sigma_{\text {all }}\right)_{\text {bending }}}=\frac{6.03  ksi }{13.76  ksi }+\frac{9.82  ksi }{22  ksi }=0.885<1.000

The W8 × 48 shape is satisfactory but may be unnecessarily large.
Trial 3: W8 × 40 (Fig. 4). Following the same procedure, the interaction formula is not satisfied.
Selection of Shape. The shape to be used is             W8 × 48

127
128
129
130

Related Answered Questions

Question: 10.SP.6

Verified Answer:

MODELING and ANALYSIS: Using Eq. (10.57), ...