Question 20.5: Molecular Speeds in a Hydrogen Gas A 0.500-mol sample of hyd...

Molecular Speeds in a Hydrogen Gas

A 0.500-mol sample of hydrogen gas is at 300 K.

(A) Find the average speed, the rms speed, and the most probable speed of the H_2 molecules.

(B) Find the number of molecules with speeds between 400 m/s and 401 m/s.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(A) Conceptualize Imagine the huge number of particles in a macroscopic sample of gas, all moving in random directions with different speeds.

Categorize We are dealing with a very large number of particles, so we can use the Maxwell–Boltzmann speed distribution function.

Analyze Use Equation 20.44 to find the average speed:

v_{\text {avg }}=\sqrt{\frac{8 k_{B} T}{\pi m_0}}=1.60 \sqrt{\frac{k_{B} T}{m_0}}     (20.44)

\begin{aligned}v_{\text {avg }} & =1.60 \sqrt{\frac{k_{B} T}{m_0}}=1.60 \sqrt{\frac{\left(1.38 \times 10^{-23}  J /K\right)(300  K)}{2\left(1.67 \times 10^{-27}  kg\right)}} \\& =1.78 \times 10^3  m/s\end{aligned}

Use Equation 20.43 to find the rms speed:

v_{\text {rms }}=\sqrt{\overline{v^2}}=\sqrt{\frac{3 k_{B} T}{m_0}}=1.73 \sqrt{\frac{k_{B} T}{m_0}}     (20.43)

\begin{aligned}v_{\text{rms}} & =1.73 \sqrt{\frac{k_{B} T}{m_0}}=1.73 \sqrt{\frac{\left(1.38 \times 10^{-23}  J/K\right)(300  K)}{2\left(1.67 \times 10^{-27}  kg\right)}} \\& =1.93 \times 10^3  m/s\end{aligned}

Use Equation 20.45 to find the most probable speed:

v_{mp}=\sqrt{\frac{2 k_{B} T}{m_0}}=1.41 \sqrt{\frac{k_{B} T}{m_0}}     (20.45)

\begin{aligned}v_{mp} & =1.41 \sqrt{\frac{k_{B} T}{m_0}}=1.41 \sqrt{\frac{\left(1.38 \times 10^{-23}  J/K\right)(300  K)}{2\left(1.67 \times 10^{-27}  kg\right)}} \\& =1.57 \times 10^3  m/s\end{aligned}

(B) Use Equation 20.42 to evaluate the number of molecules in a narrow speed range between v and v + dv:

N_v=4 \pi N\left(\frac{m_0}{2 \pi k_{B} T}\right)^{3 / 2} v^2 e^{-m_0 v^2 / 2 k_{B} T}     (20.42)

(1)   N_v d v=4 \pi N\left(\frac{m_0}{2 \pi k_{B} T}\right)^{3 / 2} v^2 e^{-m_0 v^2 / 2 k_{B} T} d v

Evaluate the constant in front of v²:

\begin{aligned}4 \pi N\left(\frac{m_0}{2 \pi k_{B} T}\right)^{3 / 2}&=4 \pi n N_{A}\left(\frac{m_0}{2 \pi k_{B} T}\right)^{3 / 2}\\& =4 \pi(0.500 \text{ mol})\left(6.02 \times 10^{23} \text{ mol}^{-1}\right)\left[\frac{2\left(1.67 \times 10^{-27}  kg\right)}{2 \pi\left(1.38 \times 10^{-23}  J/K\right)(300  K)}\right]^{3 / 2} \\& =1.74 \times 10^{14}  s^3 /m^3\end{aligned}

Evaluate the exponent of e that appears in Equation (1):

-\frac{m_0 v^2}{2 k_{B} T}=-\frac{2\left(1.67 \times 10^{-27}  kg\right)(400  m/s)^2}{2\left(1.38 \times 10^{-23}  J/K\right)(300  K)}=-0.064  5

Evaluate N_v d v using these values in Equation (1) and evaluating v and dv:

\begin{aligned} N_v d v&=\left(1.74 \times 10^{14}  s^3 /m^3\right)(400  m/s)^2 e^{-0.064  5}(1  m/s)\\&=2.61 \times 10^{19} \text { molecules }\end{aligned}

Finalize In this evaluation, we could calculate the result without integration because dv = 1 m/s is much smaller than v = 400 m/s. Had we sought the number of particles between, say, 400 m/s and 500 m/s, we would need to integrate Equation (1) between these speed limits.

Related Answered Questions