Derive the displacement field for an unloaded beam segment by integrating the differential equation of equilibrium.
Derive the displacement field for an unloaded beam segment by integrating the differential equation of equilibrium.
Let us consider the beam segment of length l of Figure 1.6 with a shear force and a couple acting at each end.
The equilibrium of an unloaded infinitesimal beam segment of length dx leads to the well known differential equations (Figure 1.7) [Ti2]:
Equilibrium of couples: \frac{\mathrm{d} M}{\mathrm{d} x}= -Q
Equilibrium of vertical forces:\frac{\mathrm{d} Q}{\mathrm{d} x}=0
Differentiating the first equation and making use of the second one and of the bending moment-curvature relationship of Eq.(1.5) gives
Eq.(1.5):M=-\int \int_{A}^{}z\sigma _{x}dA=\left ( \int \int_{A}^{}z^{2}dA \right )E\frac{\mathrm{d^{2}} w}{\mathrm{d} x^{2}}=EI_{y}\frac{\mathrm{d^{2}} w}{\mathrm{d} x^{2}}=EI_{y}\kappa
\frac{\mathrm{d}^{^{4}} w}{\mathrm{d} x^{4}}=0The solution of this differential equation is the cubic polynomical
w(x) = a_{1} + a_{2} + a_{3}x^{2} + a_{4}x^{3}
The conditions at the unloaded beam segment ends are (Figure 1.6)
w=w_{1} and \frac{\mathrm{d} w}{\mathrm{d} x}=\left (\frac{\mathrm{d} w}{\mathrm{d} x} \right )_{1} at x = 0
w=w_{2} and \frac{\mathrm{d} w}{\mathrm{d} x}=\left (\frac{\mathrm{d} w}{\mathrm{d} x} \right )_{2} at x = l
which lead to the following equations system
\begin{Bmatrix}w_{1}\\ \left ( \frac{\mathrm{d} w}{\mathrm{d} x} \right )_{1}\\ w_{2}\\ \left ( \frac{\mathrm{d} w}{\mathrm{d} x} \right )_{2}\end{Bmatrix} = \begin{bmatrix}1 & 0 &0 &0 \\ 0 & 1 &0 &0 \\ 1 &l &l^{2} &l^{3} \\ 0 & 1 & 2l &3l^{2} \end{bmatrix} \begin{Bmatrix}a_{1}\\ a_{2}\\ a_{3}\\ a_{4}\end{Bmatrix}
from which the parameters a_{i} can be obtained. Substituting these into the cubic deflection field gives
w\left ( x \right )=f_{1\left ( x \right )}w_{1}+f_{2}\left ( x \right )\frac{l}{2}\left ( \frac{\mathrm{d} w}{\mathrm{d} x} \right )_{1}+f_{3\left ( x \right )}w_{2}+f_{4\left ( x \right )}\frac{l}{2}\left ( \frac{\mathrm{d} w}{\mathrm{d} x} \right )_{2}
where
f_{1}\left ( x \right )=1-3\left ( \frac{x}{l} \right )^{2}+2\left ( \frac{x}{l} \right )^{3} ; f_{2}\left ( x \right )=\frac{2x}{l}-4\left (\frac{x}{l} \right )^{2}+2\left ( \frac{x}{l} \right )^{3}
f_{3}\left ( x \right )=3\left (\frac{x}{l} \right )^{2}-2\left ( \frac{x}{l} \right )^{3} ; f_{4}\left ( x \right )=-2\left (\frac{x}{l} \right )^{2}+2\left ( \frac{x}{l} \right )^{3}
The coincidence of functions f_{i}\left ( \xi \right ) with the Hermite shape functions (1.11a) can be recognized after making a simple transformation to the natural coordinate system, i.e. changing x by \frac{l}{2}\left ( 1+\xi \right ) (Eq.(1.11b)).
(Eq.(1.11b)): \xi =\frac{2}{l^{(e)}}\left ( x-x_{c} \right ) and x_{c}=\frac{x_{1}+x_{2}}{2}
Using the PVW it is easy to deduce that the stiffness matrix for the unloaded beam segment of length l of Figure 1.6 coincides precisely with that for the 2-noded Hermite beam element (Eq.(1.20)).
(Eq.(1.20)) : k^{(e)}= \left (\frac{EI_{y}}{l^{3}}\right )^{(e)}\begin{bmatrix}12 &6l^{(e)} &-12 &6l^{(e)} \\ \ddots & 4\left ( l^{(e)} \right )^{2} &-6l^{(e)} &2\left ( l^{(e)} \right )^{2} \\ & \ddots & 12 &-6l^{(e)} \\ Sym. & & \ddots &4\left ( l^{(e)} \right )^{2} & \end{bmatrix}