Question 16.SP.9: A cord is wrapped around the inner drum of a wheel and pulle......

A cord is wrapped around the inner drum of a wheel and pulled horizontally with a force of 200 N. The wheel has a mass of 50 kg and a radius of gyration of 70 mm. Knowing that \mu_s=0.20 and \mu_k=0.15,, determine the acceleration of G and the angular acceleration of the wheel.

16.SP.9
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a. Assume Rolling without Sliding. In this case, we have

\bar{a}=r \alpha=(0.100  m ) \alpha

We can determine whether this assumption is justified by comparing the friction force obtained with the maximum available friction force. The moment of inertia of the wheel is

\bar{I}=m \bar{k^2}=(50\text{ kg} )(0.070  m )^2=0.245 \text{ kg} \cdot m ^2

Equations of Motion

+\downarrow \Sigma M_C=\Sigma\left(M_C\right)_{\text {eff }}: \quad(200  N )(0.040  m )=m\bar{a}(0.100  m )+\bar{I} \alpha
\begin{aligned}8.00  N \cdot m & =(50 \text{ kg} )(0.100  m ) \alpha(0.100  m )+\left(0.245 \text{ kg} \cdot m ^2\right) \alpha \\\alpha & =+10.74\text{ rad}/ s ^2 \\\bar{a} & =r \alpha=(0.100  m )\left(10.74\text{ rad}/ s ^2\right)=1.074  m / s ^2\end{aligned}
\begin{array}{lll}\stackrel{+}{\rightarrow} \Sigma F_x=\Sigma\left(F_x\right)_{\text {eff }}: & F+200  N =m \bar{a} & \\& F+200  N =(50 \text{ kg} )\left(1.074  m / s ^2\right) & \\& F=-146.3  N & F =146.3   N \leftarrow\end{array}
\begin{aligned}+\uparrow \Sigma F_y&=\Sigma\left(F_y\right)_{\text{eff}}: \\& N-W=0 \quad N-W=m \text{g}=(50 \text{ kg} )\left(9.81  m / s ^2\right)=490.5  N \\& &N =490.5  N \uparrow\end{aligned}

Maximum Available Friction Force

F_{\max }=\mu_s N=0.20(490.5  N )=98.1  N

Since F>F_{\max }, the assumed motion is impossible.
b. Rotating and Sliding. Since the wheel must rotate and slide at the same time, we draw a new diagram, where \overline{\mathbf{a}} and α are independent and where

F=F_k=\mu_k N=0.15(490.5  N )=73.6  N

From the computation of part a, it appears that F should be directed to the left. We write the following equations of motion:

\begin{aligned}\stackrel{+}{\rightarrow} \Sigma F_x=\Sigma\left(F_x\right)_{ \text{eff} }: \quad 200  N &-73.6  N =(50\text{ kg}) \bar{a} \\& \bar{a}=+2.53  m / s ^2 \quad \overline{ \mathbf{a} }=2.53  m / s ^2 \rightarrow\end{aligned}
\begin{aligned}+\downarrow \Sigma M_G&=\Sigma\left(M_G\right)_{\text {eff: }}: \\& (73.6  N )(0.100  m )-(200  N )(0.060  m )=\left(0.245 \text{ kg} \cdot m ^2\right) \alpha \\&\quad\quad\quad\quad\quad \alpha=-18.94\text{ rad} / s ^2 \quad \alpha=18.94 \text{ rad}/ s ^2 \uparrow\end{aligned}
16.SP.9
16.SP.9

Related Answered Questions