The extremities of a 4-ft rod weighing 50 lb can move freely and with no friction along two straight tracks as shown. If the rod is released with no velocity from the position shown, determine (a) the angular acceleration of the rod, (b) the reactions at A and B.
Kinematics of Motion. Since the motion is constrained, the acceleration of G must be related to the angular acceleration α. To obtain this relation, we first determine the magnitude of the acceleration \mathbf{a} _A of point A in terms of α. Assuming that α is directed counterclockwise and noting that a_{B / A}=4 \alpha, we write
\begin{aligned}\mathbf{a} _B & = \mathbf{a} _A+ \mathbf{a} _{B / A} \\{\left[a_B ⦪ 45^{\circ}\right] } & =\left[a_A \rightarrow\right]+\left[4 \alpha ⦫ 60^{\circ}\right]\end{aligned}
Noting that \phi=75^{\circ} and using the law of sines, we obtain
a_A=5.46 \alpha \quad a_B=4.90 \alpha
The acceleration of G is now obtained by writing
\begin{aligned}& \overline{ \mathbf{a} }= \mathbf{a} _G= \mathbf{a} _A+ \mathbf{a} _{G / A} \\& \overline{ \mathbf{a} }=[5.46 \alpha \rightarrow]+\left[2 \alpha ⦫ 60^{\circ}\right]\end{aligned}
Resolving \overline{ \mathbf{a} } into x and y components, we obtain
\begin{array}{lll}\bar{a}_x=5.46 \alpha-2 \alpha \cos 60^{\circ}=4.46 \alpha & \overline{ \mathbf{a} }_x=4.46 \alpha \rightarrow \\\bar{a}_y=-2 \alpha \sin 60^{\circ}=-1.732 \alpha & \overline{ \mathbf{a} }_y=1.732 \alpha \downarrow\end{array}
Kinetics of Motion. We draw a free-body-diagram equation expressing that the system of the external forces is equivalent to the system of the effective forces represented by the vector of components m \overline{ \mathbf{a} }_x \text { and } m \overline{ \mathbf{a} }_y attached at G and the couple \bar{I} \alpha. We compute the following magnitudes:
\begin{aligned}& \bar{I}=\frac{1}{12} m l^2=\frac{1}{12} \frac{50\text{ lb}}{32.2\text{ ft} / s ^2}(4 \text{ ft} )^2=2.07 \text{ lb} \cdot \text{ ft} \cdot s ^2 \quad \bar{I} \alpha=2.07 \alpha \\& m \bar{a}_x=\frac{50}{32.2}(4.46 \alpha)=6.93 \alpha \quad m \bar{a}_y=-\frac{50}{32.2}(1.732 \alpha)=-2.69 \alpha\end{aligned}
Equations of Motion
\begin{aligned}+\uparrow \Sigma M_E=&\Sigma\left(M_E\right)_{\text {eff }}:\\&(50)(1.732)=(6.93 \alpha)(4.46)+(2.69 \alpha)(1.732)+2.07 \alpha\end{aligned}
α = 12.30 rad/s² α = 2.30 rad/s² ↑
\stackrel{+}{\rightarrow} \Sigma F_x=\Sigma\left(F_x\right)_{\text {eff }}: \quad R_B \sin 45^{\circ}=(6.93)(2.30)=15.94R_B=22.5\text{ lb} \quad R _B=22.5 \text{ lb} ⦨ 45^{\circ}
\begin{gathered}+\uparrow \Sigma F_y=\Sigma\left(F_y\right)_{ \text {eff } }: \quad R_A+R_B \cos 45^{\circ}-50=-(2.69)(2.30) \\R_A=-6.19-15.94+50=27.9\text { lb} \quad\quad\quad R _A=27.9 \text { lb} \uparrow\end{gathered}