Question 17.SP.9: A 0.05-lb bullet B is fired with a horizontal velocity of 15......

A 0.05-lb bullet B is fired with a horizontal velocity of 1500 ft/s into the side of a 20-lb square panel suspended from a hinge at A. Knowing that the panel is initially at rest, determine (a) the angular velocity of the panel immediately after the bullet becomes embedded, (b) the impulsive reaction at A, assuming that the bullet becomes embedded in 0.0006 s.

17.SP.9
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Principle of Impulse and Momentum. We consider the bullet and the panel as a single system and express that the initial momenta of the bullet and panel and the impulses of the external forces are together equipollent to the final momenta of the system. Since the time interval Δt = 0.0006 s is very short, we neglect all nonimpulsive forces and consider only the external impulses \mathbf{A} _x \Delta t \text { and } \mathbf{A} _y \Delta t.

\text { Syst Momenta }_1+\text { Syst Ext Imp } \text { M }_{1 \rightarrow 2}=\text { Syst Momenta }_2

\begin{aligned}&+\uparrow \text { moments about } A:\\&\stackrel{+}{\rightarrow} x \text { components: }\\&+\uparrow y\text{components:}\end{aligned}\quad\quad\quad\begin{aligned}m_B v_B\left(\frac{14}{12}\text{ ft}\right)+0 &=m_P \bar{v}_2\left(\frac{9}{12} \text{ ft} \right)+\bar{I}_P \omega_2&(1) \\m_B v_B+A_x \Delta t & =m_P \bar{v}_2 &(2)\\0+A_y \Delta t & =0&(3)\end{aligned}

The centroidal mass moment of inertia of the square panel is

\bar{I}_P=\frac{1}{6} m_P b^2=\frac{1}{6}\left(\frac{20\text{ lb}}{32.2}\right)\left(\frac{18}{12} \text{ ft} \right)^2=0.2329 \text{ lb} \cdot \text{ ft} \cdot s ^2

Substituting this value as well as the given data into (1) and noting that

\bar{v}_2=\left(\frac{9}{12} \text{ ft} \right) \omega_2

we write

\left(\frac{0.05}{32.2}\right)(1500)\left(\frac{14}{12}\right)=0.2329 \omega_2+\left(\frac{20}{32.2}\right)\left(\frac{9}{12} \omega_2\right)\left(\frac{9}{12}\right)

\begin{aligned}& \omega_2=4.67\text{ rad} / s \quad \omega_2=4.67 \text{ rad} / s  {\uparrow} \\& \bar{v}_2=\left(\frac{9}{12} \text{ ft} \right) \omega_2=\left(\frac{9}{12} \text{ ft} \right)(4.67 \text{ rad} / s )=3.50 \text{ ft} / s\end{aligned}

Substituting \bar{v}_2=3.50\text{ ft}/ s , \Delta t=0.0006  s, and the given data into Eq. (2), we have

\left(\frac{0.05}{32.2}\right)(1500)+A_x(0.0006)=\left(\frac{20}{32.2}\right)(3.50)

A_x=-259\text{ lb}\quad\quad\quad A _x=259 \text{ lb} \leftarrow

From Eq. (3), we find        \begin{array}{ll}A_y=0 &\quad\quad\quad\quad\quad\quad\quad A _y=0\end{array}

17.SP.9

Related Answered Questions