Question 17.SP.11: A square package of side a and mass m moves down a conveyor ......

A square package of side a and mass m moves down a conveyor belt A with a constant velocity v1\overline{ \mathbf{v}}_1. At the end of the conveyor belt, the corner of the package strikes a rigid support at B. Assuming that the impact at B is perfectly plastic, derive an expression for the smallest magnitude of the velocity v1\overline{ \mathbf{v}}_1 for which the package will rotate about B and reach conveyor belt C.

17.SP.11
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Principle of Impulse and Momentum. Since the impact between the package and the support is perfectly plastic, the package rotates about B during the impact. We apply the principle of impulse and momentum to the package and note that the only impulsive force external to the package is the impulsive reaction at B.

 Syst Momenta 1+ Syst Ext Imp12= Syst Momenta 2\text { Syst Momenta }_1+\text { Syst Ext } \operatorname{Imp}_{1 \rightarrow 2}=\text { Syst Momenta }_2

+ moments about B:(mvˉ1)(12a)+0=(mvˉ2)(122a)+Iˉω2+\uparrow \text { moments about } B: \quad\left(m \bar{v}_1\right)\left(\frac{1}{2} a\right)+0=\left(m \bar{v}_2\right)\left(\frac{1}{2} \sqrt{2} a\right)+\bar{I} \omega_2       (1)
Since the package rotates about B, we have vˉ2=(GB)ω2=122aω2\bar{v}_2=(G B) \omega_2=\frac{1}{2} \sqrt{2} a \omega_2. We substitute this expression, together with Iˉ=16ma2\bar{I}=\frac{1}{6} m a^2, into Eq. (1):

(mvˉ1)(12a)=m(122aω2)(122a)+16ma2ω2vˉ1=43aω2\left(m \bar{v}_1\right)\left(\frac{1}{2} a\right)=m\left(\frac{1}{2} \sqrt{2} a\omega_2\right)\left(\frac{1}{2} \sqrt{2} a\right)+\frac{1}{6} m a^2 \omega_2 \quad\bar{v}_1=\frac{4}{3} a \omega_2               (2)

Principle of Conservation of Energy. We apply the principle of conservation of energy between position 2 and position 3.
Position 2. V2=Wh2V_2=W h_2. Recalling that vˉ2=122aω2\bar{v}_2=\frac{1}{2} \sqrt{2} a \omega_2, we write

T2=12mvˉ22+12Iˉω22=12m(122aω2)2+12(16ma2)ω22=13ma2ω22T_2=\frac{1}{2} m \bar{v}_2^2+\frac{1}{2} \bar{I} \omega_2^2=\frac{1}{2} m\left(\frac{1}{2}\sqrt{2} a \omega_2\right)^2+\frac{1}{2}\left(\frac{1}{6} m a^2\right) \omega_2^2=\frac{1}{3}m a^2 \omega_2^2

Position 3. Since the package must reach conveyor belt C, it must pass through position 3 where G is directly above B. Also, since we wish to determine the smallest velocity for which the package will reach this position, we choose vˉ3=ω3=0. Therefore  T3=0 and V3=Wh3\bar{v}_3=\omega_3=0 \text {. Therefore }  T_3=0 \text { and } V_3=W h_3.
Conservation of Energy

T2+V2=T3+V313ma2ω22+Wh2=0+Wh3ω22=3Wma2(h3h2)=3ga2(h3h2)(3)\begin{aligned}T_2+V_2 & =T_3+V_3 \\\frac{1}{3} m a^2 \omega_2^2+W h_2 & =0+W h_3 \\\omega_2^2=\frac{3 W}{m a^2}\left(h_3-h_2\right) & =\frac{3 \text{g}}{a^2}\left(h_3-h_2\right)&(3)\end{aligned}         (3)

Substituting the computed values of h2 and h3h_2 \text { and } h_3 into Eq. (3), we obtain

ω22=3ga2(0.707a0.612a)=3ga2(0.095a)ω2=0.285g/a\begin{array}{rc}\omega_2^2=\frac{3 \text{g}}{a^2}(0.707 a-0.612 a)=\frac{3 \text{g}}{a^2}(0.095 a) & \omega_2=\sqrt{0.285 \text{g} / a}\end{array}

barv1=43aω2=43a0.285g/avˉ1=0.712ga\begin{array}{rc}bar{v}_1=\frac{4}{3} a \omega_2=\frac{4}{3} a \sqrt{0.285 \text{g} / a} & \bar{v}_1=0.712 \sqrt{\text{g} a}\end{array}

17.SP.11
17.SP.11

Related Answered Questions