Question 2.11: Harmonic Analysis of a Square Wave. Find the Fourier series ......

Harmonic Analysis of a Square Wave. Find the Fourier series equivalent of the square wave in Fig. 2.31a, assuming that it has a peak value of 1 V.

Figure 2.31
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We know by inspection, using (2.83) to (2.86), that the series will have only sines, with no even harmonics. Therefore, all we need are the even coefficients b_{n} from (2.82):

b_{n} \ = \ \frac{2}{T} \ \int_{0}^{T}{ \ f\left(t\right) \ \sin \ n\omega t \ dt} , \quad n \ = \ 1, 2, 3 \ . \ . \ . (2.82)

a_0 \ = \ 0 \ : \quad \text{when average value,} \ dc \ = \ 0 (2.83)

\text{no even harmonics:} \quad \text{when} \ f \ \left(t \ + \ \frac{T}{2} \right) \ = \ -f\left(t\right) (2.86)

b_{n} \ = \ \frac{2}{T} \ \int_{0}^{T}{ \ f\left(t\right) \ \sin \ n\omega t \ dt} \ = \ \frac{2}{T} \ \left[ \ \int_{0}^{{T}/{2}}{ \ 1 \ \cdot \ \sin \ n\omega t \ dt} \ + \ \int_{{T}/{2}}^{T}{ \ \left(-1\right) \ \cdot \ \sin \ n\omega t \ dt} \ \right]

Recall that the integral of a sine is the cosine with a sign change, so

\begin{matrix} b_{n} & = \ \frac{2}{T} \ \left[ \ \frac{-1}{n\omega } \ \cos \ n\omega t \mid ^{t={T}/{2}}_{t=0} \ + \ \frac{1}{n\omega } \cos n\omega t \mid ^{t=T}_{t={T}/{2}} \ \right] \quad \quad \quad \quad \quad \quad \quad \quad \\ & = \ \frac{2}{n\omega T} \left\{ \ \left(-1\right) \left[ \ \cos \ n\omega \frac{T}{2} \ – \ \cos \ n\omega \ \cdot \ 0 \ \right] \ + \ \cos \ n\omega T \ – \ \cos \ n\omega \frac{T}{2} \ \right\} \end{matrix}

Substituting ω = 2πf = 2π/T gives

= \ \frac{T}{2\pi } \ \cdot \ \frac{2}{nT} \ \left\{ \ – \cos \ \left(\frac{2\pi }{T} \ \cdot \ \frac{nT}{2} \right) \ + \ 1 \ + \ \cos \ \left(\frac{2\pi }{T} \ \cdot \ nT \right) \ – \ \cos \ \left(\frac{2\pi }{T} \ \cdot \ \frac{nT}{2} \right) \ \right\}
= \ \frac{1}{n\pi } \ \left[ \ -2 \ \cos \ n\pi \ + \ 1 \ + \ \cos \ 2n\pi \ \right]

Since this is half-wave symmetric, there are no even harmonics; that is, n is an odd number. For odd values of n,

\cos \ n\pi \ = \ \cos \ \pi \ = \ -1 \quad \text{and} \quad \cos \ 2n\pi \ = \ \cos \ 0 \ = \ 1

That makes for a nice, simple solution:

b_{n} \ = \ \frac{4}{n\pi }

That is,

b_{1} \ = \ \frac{4}{\pi } \ = \ 1.273, \quad b_{3} \ = \ \frac{4}{3\pi } \ = \ 0.424, \quad b_{5} \ = \ \frac{4}{5\pi } \ = \ 0.255 \ . \ . \ .

So the series is

\text{(Square wave with amplitude of 1)} \ =  \frac{4}{\pi } \ \left[ \ \sin \ \omega t \ + \ \frac{1}{3} \ \sin \ 3\omega t \ + \ \frac{1}{5} \ \sin \ 5\omega t \ + \ . \ . \ . \ \right]

Related Answered Questions

Question: 2.1

Verified Answer:

We need to find the square root of the average val...
Question: 2.13

Verified Answer:

Only the harmonics divisible by three will contrib...
Question: 2.2

Verified Answer:

From (2.11), the amplitude (magnitude, peak value)...