Harmonic Distortion for a CFL. A harmonic analysis of the current drawn by a CFL yields the following data. Find the rms value of current and the total harmonic distortion (THD).
\begin{matrix} \hline \text{Harmonics} & \text{rms Current (A)} \\ \hline 1 & 0.15 \\ 3 & 0.12 \\ 5 & 0.08 \\ 7 & 0.03 \\ 9 & 0.02 \\ \hline \end{matrix}From (2.94) the rms value of current is
From (2.95) the total harmonic distortion is
THD \ = \ \frac{\sqrt{{I_{2}}^{2} \ + \ {I_{3}}^{2} \ + \ {I_{4}}^{2} \ + \ \cdot \ \cdot \ \cdot}}{I_{1}} (2.95)
THD \ = \ \frac{\sqrt{\ \left(0.12\right) ^{2} \ + \ \left(0.08\right) ^{2} \ + \ \left(0.03\right) ^{2} \ + \ \left(0.02\right) ^{2}} }{0.15} \ = \ 0.99 \ = \ 99\%so the total rms current in the harmonics is almost exactly the same as the rms current in the fundamental.