Question 7.4.12: Solve the initial value problem x′ = [5 -17 8 -7]x, x(0) = [...

Solve the initial value problem

\textbf{x}^{′} =\begin{bmatrix} 5 & -17 \\ 8& -7 \end{bmatrix} \textbf{x}, \textbf{x}(0) = \left [ \begin{matrix} 4 \\ 2\end{matrix} \right ] .                       (54)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The coefficient matrix

A = \begin{bmatrix} 5 & -17 \\ 8& -7 \end{bmatrix}               (55)

has characteristic equation

|A – λI| = \begin{vmatrix} 5-\lambda & -17 \\ 8 & -7-\lambda \end{vmatrix} = (\lambda +1)^{2} + 100 = 0.

and hence has the complex conjugate eigenvalues λ_{1}, λ_{2} = -1 ± 10i . If v = [a   b]^{T} is an eigenvector associated with λ = -1 + 10i , then the eigenvector equation (A – λI)v = 0 yields the same system (48) of equations found in Example 11:

(6 – 10i )a – 17b = 0.
4a – (3 + 5i)b = 0.                              (48)

As in  Example 11, each of these equations is satisfied by a = 3 + 5i and b = 4. Thus the desired eigenvector, associated with λ_{1} = -1 + 10i, is once again v = [3 + 5i       4]^{T}, with real and imaginary parts

a =  \left [ \begin{matrix} 3 \\ 4 \end{matrix} \right ]      and        b = \left [ \begin{matrix} 5 \\ 0 \end{matrix} \right ],            (56)

respectively. Taking p = -1 and q = 10 in Eq. (5) therefore gives the general solution of the system x^{′} = Ax:

x(t) = c_{1} e^{pt} (a  \cos qt  –  sin qt ) + c_{2} e^{pt} (b  \cos qt  +  a  sin qt )            (5)

x(t) = c_{1} e^{-t} \left ( \begin{matrix} \left [ \begin{matrix} 3 \\ 4 \end{matrix} \right ] \cos 10t – \left [ \begin{matrix} 5 \\ 0 \end{matrix} \right ] \sin 10t \end{matrix} \right ) + c_{2} e^{-t} \left ( \begin{matrix} \left [ \begin{matrix} 5 \\ 0 \end{matrix} \right ]\cos 10t + \left [ \begin{matrix} 3 \\ 4 \end{matrix} \right ] \sin 10t \end{matrix} \right )

= \left [ \begin{matrix}  c_{1} e^{-t} (3 \cos 10t  –  5  \sin 10t) + c_{2} e^{-t} (5 \cos 10t  +  3  \sin 10t)\\ 4 c_{1} e^{-t} \cos 10t + 4 c_{2} e^{-t} \sin 10t \end{matrix} \right ].        (57)

The initial condition x(0) = [4     2]^{T} gives  c_{1} = c_{2} = \frac{1}{2} once again, and with these values Eq. (57) becomes (in scalar form)

x_{1}(t) = e^{-t} (4 \cos 10t  –  \sin 10t),

x_{2}(t) = e^{-t} (2 \cos 10t + 2 \sin 10t).                   (58)

Related Answered Questions

Question: 7.6.3

Verified Answer:

In Example 2 we found that the coefficient matrix ...
Question: 7.6.1

Verified Answer:

The characteristic equation of the coefficient mat...
Question: 7.4.13

Verified Answer:

Although we could directly apply the eigenvalue/ei...
Question: 7.4.11

Verified Answer:

The coefficient matrix A = \begin{bmatrix}...
Question: 7.6.4

Verified Answer:

The characteristic equation of the coefficient mat...
Question: 7.3.3

Verified Answer:

The coefficient matrix A = \begin{bmatrix} ...
Question: 7.3.1

Verified Answer:

The matrix form of the system in (9) is x^...