Use the binomial theorem to expand (1−z1)−3 up to the term z41. Hence find the sequence with z transform F(z)=(z−1)3z3.
Using the binomial theorem, we have
(1−z1)−3==1+(−3)(−z1)+2!(−3)(−4)(−z1)2+3!(−3)(−4)(−5)(−z1)3+4!(−3)(−4)(−5)(−6)(−z1)4+⋯1+z3+z26+z310+z415+⋯provided |z| > 1. Since
F(z)=(z−1)3z3=(zz−1)−3=(1−z1)−3we have
F(z)=1+z3+z26+z310+z415+⋯Thus F(z) can be inverted directly to give
f[k]=1,3,6,10,15,… that is, f[k]=2(k+2)(k+1)k⩾0