Compute the stiffness matrix and the self-weight equivalent nodal modal force amplitude vector for a 3-noded triangular straight prism.
Compute the stiffness matrix and the self-weight equivalent nodal modal force amplitude vector for a 3-noded triangular straight prism.
The faces of the prism are linear triangles (Figure 11.21). The shape functions are
N_{i}=\frac{1}{2A^{(e)}}[a_{i}+b_{i}x+c_{i}z]where a_{i}, b_{i} and c_{i} are given by Eq.(4.32b) of [On4] with x, z for x, y. The element strain matrix is
B_{i}^{l}=\frac{1}{2A^{(e)}}\begin{bmatrix}b_{i} &0 &0 \\ 0 &-\gamma N_{i} &0 \\ 0 & 0 &c_{i} \\ \gamma N_{i} &b_{i} &0 \\ c_{i} &0 &b_{i} \\ 0&c_{i} &\gamma N_{i} \end{bmatrix}con\gamma =\frac{l\pi }{b}The product B_{i}^{l^{T}}DB_{j}^{l} contains terms such as N_{i} and N_{i}N_{j}. Analytical integration leads to
[K_{ij}^{ll}]^{(e)}=\frac{b}{8A^{(e)}}\times \begin{bmatrix}(d_{11}b_{i}b_{j}+d_{55}c_{i}c_{j}+\frac{\gamma A^{(e)}}{3}(-d_{12}b_{i}+d_{44}b_{j})(d_{13}b_{i}c_{j}+d_{55}c_{i}b_{j})+d_{44}\alpha _{ij})\\ \frac{\gamma A^{(e)}}{3}(-d_{21}b_{j}+c_{44}b_{i})(d_{44}b_{i}b_{j}+d_{66}c_{i}c_{j}+\frac{\gamma A^{(e)}}{3}(d_{66}c_{i}-d_{23}c_{j})+d_{22}\alpha _{ij})\\ (d_{31}c_{i}b_{j}+d_{55}b_{i}c_{j}) \frac{\gamma A^{(e)}}{3}(d_{66}c_{j}-d_{32}c_{i})(d_{33}c_{i}c_{j}+d_{55}b_{i}b_{j}+d_{66}\alpha _{ij})\end{bmatrix}
with \alpha _{ij}=\frac{\gamma ^{2}A^{(e)}}{6} if i = j or \frac{\gamma ^{2}A^{(e)}}{12} if i\neq j
The equivalent nodal modal force amplitude vector for self-weight is obtained from Eqs.(11.87)–(11.90). For \rho =constant, g_{x}=g_{y}=0 and g_{z}=-g ,
f_{i}^{l}=\frac{b}{2}b^{l}\iint_{A^{(e)}}^{}N_{i}^{T}dA=\frac{bA^{(e)}}{6}b^{l}=\frac{b\rho g}{3l\pi }[1-(-1)^{l}]\begin{Bmatrix}0\\ 0\\ -1\end{Bmatrix}// (Eq.(4.32b)):\hat{\sigma }{}'=\iint_{A}^{}\begin{Bmatrix}E_{\varepsilon {x}'}\\ G_{{y}'}(\frac{\partial {v}'_{c}}{\partial x}-\theta _{x}')\\ G_{{z}'}(\frac{\partial {w}'_{c}}{\partial z}-\theta _{y}')\\ {z}'E_{\varepsilon {x}'}\\ -{y}'E_{\varepsilon {x}'}\\ D_{t}\end{Bmatrix}
(Eq.(11.87)):[f_{i}^{l}]^{(e)}=C\iint_{A^{(e)}}^{} N_{i}^{T}b^{l}dA+C\oint_{S^{(e)}}^{}N_{i}^{T}t^{l}dA+p_{i}^{l}
(Eq.(11.90)):b^{l}=\frac{2\rho }{l\pi }(1-(-1)^{l})[g^{x},g_{y},g_{z}]^{T}//