A single-stage axial flow gas turbine with equal stage inlet and outlet velocities has the following design data based on the mean diameter:
Mass flow 20 kg/s
Inlet temperature, T01 1150 K
Inlet pressure 4 bar
Axial flow velocity constant through the stage 255 m/s
Blade speed, U 345 m/s
Nozzle efflux angle, α2 60°
Gas-stage exit angle 12°
Calculate (1) the rotor-blade gas angles, (2) the degree of reaction, blade-loading coefficient, and power output and (3) the total nozzle throat area if the throat is situated at the nozzle outlet and the nozzle loss coefficient is 0.05.
(1) From the velocity triangles
Cw2=Catanα2
= 255 tan 60° = 441.67 m/s
Cw3=Catanα3 = 255 tan 12° = 55.2 m/s
Vw2=Cw2 – U = 441.67 – 345 = 96.67 m/s
β2=tan−1CaVw2=tan−125596.67 = 20.8°
Also Vw3=Cw3 + U = 345 + 55.2 = 400.2 m/s
∴ β3=tan−1CaVw3=tan−1255400.2 = 57.5°
(2) Λ=2Φ(tanβ3–tanβ2)
= 2×345255(tan57.5°+tan20.8°) = 0.44
Ψ = UCa(tanβ2+tanβ3)
= 345255(tan20.8°+tan57.5°) = 1.44
Power W = mU (Cw2+Cw3)
= (20)(345)(441.67 + 54.2) = 3421.5 kW
(3) λN=21C22Cp(T2–T2′),C2=Ca secα2 = 255 sec 60° = 510 m/s
or T2–T2′=1147(0.05)(0.5)(5102) = 5.67
T2=T02–2CpC22=1150–(2)(1147)5102 = 1036.6 K
T2′ = 1036.6 – 5.67 = 1030.93 K
p2p01=(T2T01)γ/(γ–1)=(1030.931150)4 = 1.548
p2=1.5484 = 2.584 bar
ρ2=RT2p2=0.287×1036.62.584×100 = 0.869 kg/m³
m = ρ2A2C2
A2=0.869×51020 = 0.045 m²