Question 12.24: Calculating the Mass of a Reactant from the Volume of a Gase......

Calculating the Mass of a Reactant from the Volume of a Gaseous Product

Oxygen gas can be generated by heating KClO _3 to a high temperature.

2 \textrm{ KClO}_3 \textrm{(s) } \longrightarrow  2 \textrm{ KCl(s) } +  3 \textrm{ O}_2 \textrm{(g)}

How much KClO _3 , in grams, is needed to generate 7.50 L of O _2 at a pressure of 1.00 atm and a temperature of 37°C?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1 The given quantity is 7.50 L of O _2 , and the desired quantity is grams of KClO _3 .

7.50 L O _2 = ? g KClO _3

Step 2 This is a volume-of-gas-A to grams-of-B problem. The pathway, in terms of Figure 12.9, is

\boxed{\begin{matrix} \textrm{Volume} \\ \textrm{of gas A} \end{matrix}} \quad \underset{\textrm{volume}}{\underrightarrow{\textrm{Molar}}} \quad \boxed{\begin{matrix} \textrm{Moles} \\ \textrm{of A} \end{matrix}} \quad \underset{\textrm{coefficients}}{\underrightarrow{\textrm{Equation}}} \quad \boxed{\begin{matrix} \textrm{Moles} \\ \textrm{of B} \end{matrix}} \quad \underset{\textrm{mass}}{\underrightarrow{\textrm{Molar}}} \quad \boxed{\begin{matrix} \textrm{Grams} \\ \textrm{of B} \end{matrix}}

For the first unit change (volume-of-gas-A to moles-of-A) the molar volume conversion factor relationship needed, calculated using the ideal gas law, is

\frac{1  \textrm{mole O}_2}{25.4  \textrm{L O}_2}

The complete dimensional analysis setup for the problem becomes

7.50  \cancel{\textrm{L O}_2} \times \frac{1  \cancel{\textrm{mole O}_2}}{25.4   \cancel{\textrm{L O}_2}} \times \frac{2  \cancel{\textrm{moles KClO}_3}}{3  \cancel{\textrm{moles O}_2}} \times \frac{122.55  \textrm{g KClO}_3}{1  \cancel{\textrm{mole KClO}_3}}

volume A → moles A → moles B → grams B

Step 3 The solution, obtained from combining all the numerical factors, is

\frac{7.50 \times 1 \times 2 \times 122.55}{25.4 \times 3 \times 1 }  \textrm{g KClO}_3 = 24.124016 \textrm{ g KClO}_3      (calculator answer)
= 24.1 g KClO _3              (correct answer)

12.9

Related Answered Questions