Question 12.25: Calculating Gaseous Product Volume from Gaseous Reactant Vol......

Calculating Gaseous Product Volume from Gaseous Reactant Volumes

How many liters of NO _2 gas at 3.00 atm pressure and 55°C can be produced from 20.0 L of N _2 gas at 1.00 atm pressure and 35°C and 30.0 L of O _2 gas at 2.00 atm pressure and 45°C, according to the following chemical reaction?

\textrm{N}_2 \textrm{(g) } +  2 \textrm{ O}_2 \textrm{(g) } \longrightarrow  2 \textrm{ NO}_2 \textrm{(g)}
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

First, we must determine the limiting reactant because specific volumes of both reactants are given in the problem. This determination involves two separate volume-of-gas-A to moles-of-B calculations-one for each reactant. The pathway for these parallel calculations is

\boxed{\begin{matrix} \textrm{Volume} \\ \textrm{of gas A} \end{matrix}} \quad \underset{\textrm{volume}}{\underrightarrow{\textrm{Molar}}} \quad \boxed{\begin{matrix} \textrm{Moles} \\ \textrm{of A} \end{matrix}} \quad \underset{\textrm{coefficients}}{\underrightarrow{\textrm{Equation}}} \quad \boxed{\begin{matrix} \textrm{Moles} \\ \textrm{of B} \end{matrix}}

The molar volume conversion factors for N _2 and O _2 will be different because the two gases are under different temperature-pressure conditions. Using the ideal gas law, we obtain the needed molar volume conversion factors as follows:

V_{\textrm{N}_2} = \frac{nRT}{P} = \frac{(1  \cancel{\textrm{mole}}) \Bigl(0.08206  \frac{\cancel{\textrm{atm}} \cdot \textrm{L}}{\cancel{\textrm{mole}} \cdot \cancel{\textrm{K}}} \Bigr) (308  \cancel{\textrm{K}})}{1.00  \cancel{\textrm{atm}}}

= 25.27448 L      (calculator answer)
= 25.3 L              (correct answer)

V_{\textrm{O}_2} = \frac{nRT}{P} = \frac{(1  \cancel{\textrm{mole}}) \Bigl(0.08206  \frac{\cancel{\textrm{atm}} \cdot \textrm{L}}{\cancel{\textrm{mole}} \cdot \cancel{\textrm{K}}} \Bigr) (318  \cancel{\textrm{K}})}{2.00  \cancel{\textrm{atm}}}

= 13.04754 L       (calculator answer)
= 13.0 L                (correct answer)

With these two conversion factors known, the limiting reactant calculation proceeds in the normal manner.

For N _2 ,

20.0  \cancel{\textrm{L N}_2} \times \frac{1  \cancel{\textrm{mole N}_2}}{25.3   \cancel{\textrm{L N}_2}} \times \frac{2  \textrm{moles NO}_2}{1  \cancel{\textrm{mole N}_2}}

= 1.5810276 moles NO _2      (calculator answer)
= 1.58 moles NO _2               (correct answer)

For O _2 ,

30.0  \cancel{\textrm{L O}_2} \times \frac{1  \cancel{\textrm{mole O}_2}}{13.0   \cancel{\textrm{L O}_2}} \times \frac{2  \textrm{moles NO}_2}{2  \cancel{\textrm{mole O}_2}}

= 2.3076923 moles NO _2      (calculator answer)
= 2.31 moles NO _2               (correct answer)

Nitrogen (N _2 ) is the limiting reactant since it produces fewer moles of NO _2 .

The overall calculation is a volume-of-gas-A to volume-of-gas-B calculation.

\boxed{\begin{matrix} \textrm{Volume} \\ \textrm{of gas A} \end{matrix}} \quad \underset{\textrm{volume}}{\underrightarrow{\textrm{Molar}}} \quad \boxed{\begin{matrix} \textrm{Moles} \\ \textrm{of A} \end{matrix}} \quad \underset{\textrm{coefficients}}{\underrightarrow{\textrm{Equation}}} \quad \boxed{\begin{matrix} \textrm{Moles} \\ \textrm{of B} \end{matrix}} \quad \underset{\textrm{volume}}{\underrightarrow{\textrm{Molar}}} \quad \boxed{\begin{matrix} \textrm{Volume} \\ \textrm{of gas B} \end{matrix}}

In doing the limiting reactant calculation we obtained moles of B (1.58 moles of NO _2 ). Thus, all that is left to do is to go from moles-of-B to volume-of-gas-B. A new molar volume conversion factor is needed since NO _2 is present at different temperature-pressure conditions than was either N _2 or O _2 .

This molar volume conversion factor is

V_{\textrm{NO}_2} = \frac{nRT}{P} = \frac{(1  \cancel{\textrm{mole}}) \Bigl(0.08206  \frac{\cancel{\textrm{atm}} \cdot \textrm{L}}{\cancel{\textrm{mole}} \cdot \cancel{\textrm{K}}} \Bigr) (328  \cancel{\textrm{K}})}{3.00  \cancel{\textrm{atm}}}

= 8.9718933 L NO _2        (calculator answer)
= 8.97 L NO _2                  (correct answer)

The moles-of-B to grams-of-B calculation, a one-step calculation, becomes

1.58  \cancel{\textrm{moles NO}_2} \times \frac{8.97  \textrm{L NO}_2}{1  \cancel{\textrm{mole NO}_2}}

= 14.1726 L NO _2       (calculator answer)
= 14.2 L NO _2             (correct answer)

Related Answered Questions