Question 12.29: Calculating Partial Pressures Using Mole Fractions The compo......

Calculating Partial Pressures Using Mole Fractions

The composition of a gaseous mixture is 4.23 moles of Ne, 0.93 mole of Ar, and 7.65 moles of H2 _2 . Calculate the partial pressure, in atmospheres, of each gas in the mixture if the total pressure is 5.00 atm at a certain temperature.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We first calculate the mole fraction of each gas.

XNe=4.23  mole(4.23+0.93+7.65) mole=0.33021077 X_{\textrm{Ne}} = \frac{4.23    \cancel{\textrm{mole}}}{(4.23 + 0.93 + 7.65)  \cancel{\textrm{mole}}} = 0.33021077      (calculator answer)
= 0.330          (correct answer)

XAr=0.93  mole(4.23+0.93+7.65) mole=0.072599531 X_{\textrm{Ar}} = \frac{0.93    \cancel{\textrm{mole}}}{(4.23 + 0.93 + 7.65)  \cancel{\textrm{mole}}} = 0.072599531      (calculator answer)
= 0.073          (correct answer)

XH2=7.65  mole(4.23+0.93+7.65) mole=0.59718969 X_{\textrm{H}_2} = \frac{7.65    \cancel{\textrm{mole}}}{(4.23 + 0.93 + 7.65)  \cancel{\textrm{mole}}} = 0.59718969      (calculator answer)
= 0.597          (correct answer)

To calculate partial pressures, we rearrange the equation

PAPtotal=XA \frac{P_{\textrm{A}}}{P_{\textrm{total}}} = X_{\textrm{A}}

to isolate the partial pressure on a side by itself.

PA=XA×Ptotal  P_{\textrm{A}} = X_{\textrm{A}} \times P_{\textrm{total}} 

Substituting known quantities into this equation gives the partial pressures.

PNe P_{\textrm{Ne}} = 0.330 × 5.00 atm = 1.65 atm       (calculator and correct answer)

PAr P_{\textrm{Ar}} = 0.073 × 5.00 atm = 0.365 atm       (calculator answer)
= 0.36 atm                (correct answer)
PH2 P_{\textrm{H}_2} = 0.597 × 5.00 atm = 2.985 atm         (calculator answer)
= 2.98 atm               (correct answer)

Answer Double Check: The sum of the partial pressures of the gases in the mixture should equal the total pressure of the mixture. Such is the case here.

(1.65 + 0.36 + 2.98) atm = 4.99 atm

The sum 4.99 atm is consistent with the given total pressure of 5.00 atm; rounding errors are the basis for the two pressures differing in the hundredths digit.

Related Answered Questions