Question 7.2: (a) Basing the calculation on the flexibility matrix, use th......

(a) Basing the calculation on the flexibility matrix, use the matrix iteration method to find the eigenvalue and eigenvector of the lowest frequency mode of the 3-DOF system of Example 7.1.

(b) Indicate how the second and third modes can be found.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Part (a):
Although we intend to base the calculation on the flexibility matrix, [K]^{-1}, suppose for a moment that the homogeneous equations of motion, in terms of the stiffness matrix, [K], are

[M]\left\{\ddot{z}\right\} + [K]\left\{z\right\} = \left\{0\right\}                          (A)

Substituting \left\{z\right\} = \left\{\overline{z} \right\} e^{\mathrm{i}\omega t} in the usual way:

(- \omega^{2} [M] + [K])\left\{\overline{z} \right\} = 0                          (B)

Pre-multiplying by [K]^{-1},

– \omega^{2} [K]^{-1} [M] \left\{\overline{z} \right\} + [K]^{-1} [K] \left\{\overline{z} \right\} = 0                          (C)

leads to a standard form

[\underline{\underline{A}}] \left\{\overline{z} \right\} = \underline{\lambda} \left\{\overline{z} \right\}                          (D)

where

[\underline{\underline{A}}] = [K]^{-1} [M]     \mathrm{and}     \underline{\lambda} = \frac{1}{\omega^{2}}

The flexibility matrix [K]^{-1} for the same system was derived in Example 1.4 as:

[K]^{-1} = \begin{bmatrix} 1/k_{1} & 1/k_{1} & 1/k_{1} \\ 1/k_{1} & (1/k_{1} + 1/k_{2}) & (1/k_{1} + 1/k_{2}) \\ 1/k_{1} & (1/k_{1} + 1/k_{2}) & (1/k_{1} + 1/k_{2} + 1/k_{3}) \end{bmatrix}                          (E)

Inserting the numerical values, the matrices [M] ,  [K]^{-1}   \mathrm{and}   [\underline{\underline{A}}] become

[M] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix},     [K]^{-1} = 10^{-3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1.5 & 1.5 \\ 1 & 1.5 & 2.5 \end{bmatrix},      [\underline{\underline{A}}] = [K]^{-1} [M] = 10^{-3} \begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}

Equation (D), to be solved by matrix iteration, is then,

\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \hat{\lambda} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix}                         (F)

where

\hat{\lambda} = (10^{3} \underline{\lambda})     \mathrm{and}     \underline{\lambda} = \frac{1}{\omega^{2}}

To find the first eigenvector \left\{\overline{z}\right\}_{1} and first scaled eigenvalue, \hat{\lambda}_{1}, a trial vector, \left\{\overline{z}\right\}, say,

\left\{\overline{z}\right\} = \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \begin{Bmatrix} 0.4 \\ 0.6 \\ 1.0 \end{Bmatrix}                       (G)

is inserted on the left side of Eq. (F). The equation is then evaluated with this assumption, normalizing the resulting vector by dividing by the largest element:

\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}\begin{Bmatrix} 0.4 \\ 0.6 \\ 1 \end{Bmatrix} = \begin{Bmatrix} 3.4 \\ 4.7 \\ 6.7 \end{Bmatrix} = 6.7\begin{Bmatrix} 0.5074 \\ 0.7014 \\ 1 \end{Bmatrix}                      (H)

The process is repeated, using the normalized column on the right in place of the trial vector on the left. After four such repeats, we have

\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}\begin{Bmatrix} 0.5292 \\ 0.7198 \\ 1 \end{Bmatrix} = \begin{Bmatrix} 3.7782 \\ 5.1381 \\ 7.1381 \end{Bmatrix} = 7.1381 \begin{Bmatrix} 0.5293 \\ 0.7198 \\ 1 \end{Bmatrix}                      (I)

The final vector on the right is now seen to agree with the first eigenvector from Example 7.1 by the Gaussian elimination method, to four significant figures.
The root \hat{\lambda} = 7.1381 = 10^{3} \underline{\lambda} = 10^{3} /\omega^{2} gives ω = 11.83 rad/s agreeing with the result of Example 7.1.

Part(b):
To find the second eigenvalue and eigenvector, the first eigenvector, already found, must be completely removed from the dynamic matrix [\underline{\underline{A}}]. This can be achieved by using the orthogonality relationship, Eq. (6.54):

\left\{\overline{z}\right\}^{T}_{j} [M] \left\{\overline{z}\right\}_{i} = 0                  (J)

At some point in the iteration procedure, the impure vector \left\{\overline{z}\right\} must consist of a linear combination of the three pure eigenvectors being sought

\left\{\overline{z} \right\} = C_{1} \left\{\overline{z} \right\}_{1} + C_{2} \left\{\overline{z} \right\}_{2} + C_{3} \left\{\overline{z} \right\}_{3}                       (K)

where C_{1},C_{2}   \mathrm{and}   C_{3} are constants. Pre-multiplying Eq. (K) by \left\{\overline{z}\right\}^{T}_{1} [M]:

\left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\} = C_{1} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{1} + C_{2} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{2} + C_{3} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{3}                       (L)

Now due to the orthogonality relationship for eigenvectors, Eq. (J), the last two terms in Eq. (L) must be zero, and

\left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\} = C_{1} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{1}                       (M)

To produce a vector \left\{\overline{z}\right\} free from \left\{\overline{z}\right\}_{1} we can now set C_{1} = 0 , and since clearly \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{1} ≠ 0 , it must be true that

\left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\} = 0                       (N)

or written out, using the notation:

\left\{\overline{z}\right\}_{1} = \begin{Bmatrix} (\overline{z}_{1})_{1} \\ (\overline{z}_{2})_{1} \\ (\overline{z}_{3})_{1}\end{Bmatrix}    \mathrm{and}    \left\{\overline{z} \right\} = \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} : \\  (\overline{z}_{1} )_{1} m_{1}\overline{z} _{1} + (\overline{z}_{2} )_{1} m_{2}\overline{z} _{2} + (\overline{z}_{3} )_{1} m_{3}\overline{z} _{3} = 0                       (O)  \\ \mathrm{from   which} \\ \overline{z}_{1} = s_{1} \overline{z}_{2} + s_{2} \overline{z}_{3}                       (P) \\ \mathrm{where} \\  s_{1} = \frac{-m_{2}(\overline{z}_{2})_{1}}{m_{1}(\overline{z}_{1})_{1}} = \frac{-1(0.7198)}{2(0.5293)} = – 0.6799                        (Q_{1})  \\  \mathrm{and}  \\ s_{2} = \frac{-m_{3}(\overline{z}_{3})_{1}}{m_{1}(\overline{z}_{1})_{1}} = \frac{-2(1)}{2(0.5293)} = – 1.8892                        (Q_{2})

The known values of s_{1}   \mathrm{and}   s_{2} can now be incorporated into a sweeping matrix, [S], where:

[S] = \begin{bmatrix} 0 & s_{1} & s_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -0.6799 & -1.8892 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}                       (R)

This is incorporated into the original iteration equation, Eq. (D), as follows:

[\underline{\underline{A}}] [S] \left\{\overline{z} \right\} = \underline{\lambda} \left\{\overline{z} \right\}                       (S)

and Eq. (F) becomes

\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}\begin{bmatrix} 0 & -0.6799 & -1.8892 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \hat{\lambda} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix}                        (T) \\ \mathrm{or} \\ \begin{bmatrix} 0 & -0.3598 & 5.7784 \\ 0 & 0.1402 & -0.7784 \\ 0 & 0.1402 & 1.2216 \end{bmatrix} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \hat{\lambda} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix}                        (U)

This is then solved for the second eigenvector and second eigenvalue, in precisely the same way as before, using an estimated vector to start the process.

Related Answered Questions