Question 6.AE.8: A three-phase, squirrel-cage induction motor is fed by a vol......

A three-phase, squirrel-cage induction motor is fed by a voltage-source inverter. The induction motor is operated at variable frequency and constant (rated) flux (that is, |\widetilde{E}| / f=\text { constant }) and has the following nameplate data: V_{L-L}=460 V, f=60 Hz, p=4 poles, n_{m\_rat}=1720 rpm, P_{out\_rat}=29.594 kW or 39.67 hp. The stator winding is Y-connected, and the parameters per phase are R_s=0.5 Ω, R´_r=0.2 Ω, X_s=X´_r=1 Ω, X_m=30 Ω at f=60 Hz, and R_{f e} \rightarrow \infty. The axial moment of inertia of the motor is Jm=0.234 kgm² , the viscous damping coefficient B can be assumed to be zero, and the inertia of the load referred to the motor shaft is J_{load}=4.766 kgm² . The steadystate/intermittent load cycle is shown in Fig. E6.8.1.
The induction motor is operated at 60 Hz (natural torque-speed characteristic).

a) Determine the rated synchronous speed, rated synchronous angular velocity, rated angular velocity, rated slip, rated stator current \left|\widetilde{I}_s\right| \text {, rated rotor current }\left|\tilde{I}_r^{\prime}\right|, and rated induced voltage |\tilde{E}| .

b) Calculate the maximum torque T_{max}\ at\ s_m and the fictitious maximum torque T_{max\_fict} at s=1.

c) Derive from the equation of motion the slip s(t) as a function of the initial slip s(0), the load torque T_L(t), the maximum fictitious torque T_{max\_fict}, the time constant τ_m, and the time t.

d) Apply the solution for s(t) to the different regions of Fig. E6.8.1 and plot s(t) from t=0 to the maximum time t=5 s of the load-cycle time period of T_{period}=5 s.

e) Calculate the torque T(t) and plot it from t=0 to t=5 s.

f) Based on the slip function compute pointwise the stator current \left|\tilde{I}_s(t)\right| \text { and plot }\left|\tilde{I}_s(t)\right| from t=0 to t=5 s.

g) Plot \left|\tilde{I}_s(t)\right|^2 as a function of time from t=0 to t=5 s.

h) Determine the rms value of the motor (stator) current i_s(t) for the entire load cycle as specified in Fig. E6.8.1; that is, determine

I_{s_{-} r m s}=\sqrt{\frac{1}{T} \int_t^{t+T}\left|\tilde{I}_s(t)\right|^2 d t .}

i) Is this induction motor over- or underdesigned? If it is underdesigned, what is the reduction of lifetime?

bbb7482b-3b30-489a-8a13-3d44b89d1cb7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The induction motor is operated at 60 Hz (natural torque-speed characteristic) [46].

a)

\begin{aligned} & n_{m s}=1800 \mathrm{rpm}, \omega_{m s}=188.49 \mathrm{rad} / \mathrm{s}, \omega_m=180.1 \mathrm{rad} / \mathrm{s}, \\ & s_{r a t}=0.044,\left|\widetilde{I}_s(t)\right|=49.82 \mathrm{~A},\left|\widetilde{I}_r^{\prime}(t)\right|=47.66 \mathrm{~A}, \\ & |\widetilde{E}|=221.75 \mathrm{~V}, \text { and } \mathrm{T}_{\mathrm{rat}}=164.31 \mathrm{Nm} .\quad (E6.8-1) \end{aligned}

b) Due to constant flux control, the (ω_m–T) or the (s–T) characteristic consists of a family of parallel lines as indicated in Fig. E6.8.2.
The maximum torque T_{max} and the slip s_m where the maximum torque occurs are [46]

T_{\max }=391.32 \mathrm{Nm}, s_m=0.20            (E6.8-2)

From the relation (see Fig. E6.8.2)

\frac{T_{\text {rat }}}{T_{\max \_ \text {fict }}}=\frac{s_{\text {rat }}}{1}            (E6.8-3)

one obtains for the maximum fictitious torque

T_{\max \_ \text {fict }}=T_{\mathrm{rat} / s_{\mathrm{rat}}}=3734.3 \mathrm{Nm}          (E6.8-4)

c) Equation of motion (or fundamental torque equation) is

T-T_L-J \frac{d \omega_m}{d t}=0            (E6.8-5)

where T_L and T are the load and the motor torques, respectively. J is the total axial moment of inertia J=J_m+J_{load}. Dividing this equation by T_{max\_fict} one gets

\frac{T}{T_{\max \_ \text {fict }}}-\frac{T_L}{T_{\max \_ \text {fict }}}-\frac{J}{T_{\max \_ \text {fict }}} \cdot \frac{d \omega_m}{d t}=0                (E6.8-6)

or with \frac{T}{T_{\max \_ \text {fict }}}=s follows

s-\frac{T_L}{T_{\max _{-} \text {fict }}}-\frac{J}{T_{\max _{-} \text {fict }}} \cdot \frac{d \omega\_m}{d t}=0 .          (E6.8-7)

with ω_m=ω_{ms}(1 – s) the differential equation becomes

\tau_m \frac{d s}{d t}+s=\frac{T_L}{T_{\max \_ \text {fict }}}              (E6.8-8)

where

\tau_m=\left(J \cdot \omega_{m s}\right) / T_{\text {max fict }}=(5 \cdot 188.49) / 3734.3=0.252 \mathrm{~s}            (E6.8-9)

is the mechanical time constant.
The general solution of this differential equation is

s(t)=\text { const } \cdot e^{\left(-\frac{t}{\tau_m}\right)}+\frac{T_L}{T_{\mathrm{max}_{-} \text {fict }}}              (E6.8-10)

For the initial condition where at t=0 one assigns s=s(0)

s(t)=\left(s(0)-\frac{T_L(t)}{T_{\max \_ \text {fict }}}\right) \cdot e^{\left(-\frac{t}{\tau_m}\right)}+\frac{T_L(t)}{T_{\max \_ \text {fict }}}                (E6.8-11)

d) Application of s(t) to eight different regions of Fig. E6.8.1.

Region I. It is assumed that the motor at time t¼0 s (at the start of the load cycle) has the steady-state slip of s(0). This slip is obtained from

\frac{T(0)}{T_{\mathrm{rat}}}=\frac{s(0)}{s_{\mathrm{rat}}}              (E6.8-12)

and with Figure E6.8.1

\begin{aligned} & T(0)=0.2 \cdot T_{\mathrm{rat}}=32.86 \mathrm{Nm} \\ & s(0)=32.86 \cdot 0.044 /(164.31)=0.0088 \end{aligned}

Therefore, the slip at the start of region I is

s\left(t^{(I)}=0\right)=0.0088

It is best to introduce for each region a new coordinate system for the time axis. Thus for region \mathrm{I}\left(0 \leq t^{(I)} \leq 0.4 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(I)}=2.8 \cdot T_{\mathrm{rat}}=460.07 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} s\left(t^{(\mathrm{I})}\right)= & \left(s\left(t^{(\mathrm{I})}=0\right)-\frac{T_L^{(\mathrm{I})}\left(t^{(\mathrm{I})}\right)}{T_{\mathrm{max}_{-} \mathrm{fict}}}\right) \cdot e^{\left(-\frac{t^{(\mathrm{I})}}{\tau_m}\right)}+\frac{T_L^{(\mathrm{I})}\left(t^{(\mathrm{I})}\right)}{T_{\mathrm{max}_{-} \mathrm{fict}}} \\ = & \left(0.0088-\frac{460.07}{3734.3}\right) e\left(-\frac{t^{(\mathrm{I})}}{\tau_m}\right)+\frac{460.07}{3734.3} \\ & s\left(t^{(\mathrm{I})}\right)=-0.1144 e \\ & s\left(t^{(\mathrm{I})}=0.4 \mathrm{~s}\right)=0.0998=s\left(t^{(\mathrm{II})}=0\right) \text { and } \\ & s\left(t^{(\mathrm{I})}=0.2 \mathrm{~s}\right)=0.07147 . \end{aligned}

Region II. For region \text { II }\left(0 \leq t^{(I I)} \leq 0.4 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\mathrm{II})}=0.2 \cdot T_{\mathrm{rat}}=32.86 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} s\left(t^{(\mathrm{II})}\right) & =\left(s\left(t^{(\mathrm{II})}=0\right)-\frac{T_L^{(\mathrm{II})}\left(t^{(\mathrm{II})}\right)}{T_{\max \_\mathrm{fict}}}\right) \cdot e\left(-\frac{t^{(\mathrm{II})}}{\tau_m}\right)+\frac{T_L^{(\mathrm{II})}\left(t^{(\mathrm{II})}\right)}{T_{\max \_ \text {fict }}} \\ & =\left(0.0998-\frac{32.86}{3734.3}\right) e\left(-\frac{t^{(\mathrm{II})}}{\tau_m}\right)+\frac{32.86}{3734.3} \end{aligned} \\ \begin{aligned} & s\left(t^{(\mathrm{II})}\right)=0.091 e^{\left(-\frac{t^{(\mathrm{II})}}{\tau_m}\right)}+0.0088 \\ & s\left(t^{(\mathrm{II})}=0.4 \mathrm{~s}\right)=0.0274=s\left(t^{(\mathrm{III})}=0\right) \text { and } \\ & s\left(t^{(\mathrm{II})}=0.2 \mathrm{~s}\right)=0.04994 . \\ & \end{aligned}

Region III. For region \text { III }\left(0 \leq t^{\text {(III) }} \leq 0.6 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\mathrm{III})}=2 \cdot T_{\mathrm{rat}}=328.62 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} s\left(t^{(\mathrm{III})}\right) & =\left(s\left(t^{(\mathrm{III})}=0\right)-\frac{T_L^{(\mathrm{III})}\left(t^{(\mathrm{III})}\right)}{T_{\max \_ \text {fict }}}\right) \cdot e^{\left(-\frac{t^{(\mathrm{III})}}{\tau_m}\right)}+\frac{T_L^{(\mathrm{III})}\left(t^{(\mathrm{III})}\right)}{T_{\max \_ \text {fict }}} \\ & =\left(0.0274-\frac{328.62}{3734.3}\right) e\left(-\frac{t^{(\mathrm{III})}}{\tau_m}\right)+\frac{328.62}{3734.3} \\ s\left(t^{(\mathrm{III})}\right) & =-0.060 e\left(-\frac{t^{(\mathrm{III})}}{\tau_m}\right)+0.088 \\ s\left(t^{(\mathrm{III})}\right. & =0.6 \mathrm{~s})=0.0824=s\left(t^{(\mathrm{IV})}=0\right) \text { and } \\ s\left(t^{(\mathrm{III})}\right. & =0.3 \mathrm{~s})=0.06957 . \end{aligned}

Region IV. For region \text { IV }\left(0 \leq t^{(I V)} \leq 0.4 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\mathrm{IV})}=0.2 \cdot T_{\mathrm{rat}}=32.86 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} & s\left(t^{(\mathrm{IV})}\right)=\left(s\left(t^{(\mathrm{IV})}=0\right)-\frac{T_L^{(\mathrm{IV})}\left(t^{(\mathrm{IV})}\right)}{T_{\max \_ \text {fict }}}\right) \cdot e^{\left(-\frac{t^{(\mathrm{IV})}}{\tau_m}\right)}+\frac{T_L^{(\mathrm{IV})}\left(t^{(\mathrm{IV})}\right)}{T_{\max \_ \text {fict }}} \\ & =\left(0.0824-\frac{32.86}{3734.3}\right) e^{\left(-\frac{t^{(\mathrm{IV})}}{\tau_m}\right)}+\frac{32.86}{3734.3}, \\ & s\left(t^{(\mathrm{IV})}\right)=0.0736 e^{\left(-\frac{t^{(\mathrm{IV})}}{\tau_m}\right)}+0.0088, \\ & s\left(t^{(\mathrm{IV})}=0.4 \mathrm{~s}\right)=0.02385=s\left(t^{(\mathrm{V})}=0\right) \text { and } \\ & s\left(t^{(\mathrm{IV})}=0.2 \mathrm{~s}\right)=0.04208 \\ & \end{aligned}

Region V. For region \mathrm{V}\left(0 \leq t^{(V)} \leq 0.8 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\mathrm{V})}=T_{\text {rat }}=164.3 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} & s\left(t^{(\mathrm{V})}\right)=\left(s\left(t^{(\mathrm{v})}=0\right)-\frac{T_L^{(\mathrm{V})}\left(t^{(\mathrm{V})}\right)}{T_{\max \_ \text {fict }}}\right) \cdot e\left(-\frac{t^{(\mathrm{v})}}{\tau_m}\right)+\frac{T_L^{(\mathrm{V})}\left(t^{(\mathrm{v})}\right)}{T_{\max \_\mathrm{fict}}} \\ &=\left(0.02384-\frac{164.31}{3734.3}\right) e\left(-\frac{t^{(\mathrm{v})}}{\tau_m}\right)+\frac{164.31}{3734.3} \\ & s\left(t^{(\mathrm{v})}\right)=-0.0202 e\left(-\frac{t^{(\mathrm{v})}}{\tau_m}\right)+0.044 \\ & s\left(t^{(\mathrm{V})}=0.8 \mathrm{~s}\right)=0.0432=s\left(t^{(\mathrm{VI})}=0\right) \text { and } \\ & s\left(t^{(\mathrm{V})}=0.4 \mathrm{~s}\right)=0.03987 \end{aligned}

Region VI. For region \mathrm{VI}\left(0 \leq t^{(\mathrm{VI})} \leq 0.4 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\mathrm{VI})}=0.2 \cdot T_{\mathrm{rat}}=32.86 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} s\left(t^{(\mathrm{VI})}\right)= & \left(s\left(t^{(\mathrm{VI})}=0\right)-\frac{T_L^{(\mathrm{VI})}\left(t^{(\mathrm{VI})}\right)}{T_{\max \_ \text {fict }}}\right) \cdot e^{\left(-\frac{t^{(\mathrm{VI})}}{\tau_m}\right)}+\frac{T_L^{(\mathrm{VI})}\left(t^{(\mathrm{VI})}\right)}{T_{\text {max } \_ \text {fict }}} \\ = & \left(0.0432-\frac{32.86}{3734.3}\right) e\left(-\frac{t^{(\mathrm{VI})}}{\tau_m}\right)+\frac{32.86}{3734.3} \\ & s\left(t^{(\mathrm{VI})}\right)=0.0344 e \\ & \left(-\frac{t^{(\mathrm{VI})}}{\tau_m}\right)+0.0088 \\ & s\left(t^{(\mathrm{VI})}=0.4 \mathrm{~s}\right)=0.01583=s\left(t^{(\mathrm{VII})}=0.2 \mathrm{~s}\right)=0.0244 . \end{aligned}

Region VII. For region \text { VII }\left(0 \leq t^{(V I I)} \leq 1 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\mathrm{VII})}=0.5 \cdot T_{\mathrm{rat}}=82.155 \mathrm{Nm}

With Eq. E6.8-11

\begin{gathered} s\left(t^{(\mathrm{VII})}\right)=\left(s\left(t^{(\mathrm{VII})}=0\right)-\frac{T_L^{(\mathrm{VII})}\left(t^{(\mathrm{VII})}\right)}{T_{\max \_ \text {fict }}}\right) \cdot e^{\left(-\frac{t^{(\mathrm{VII})}}{\tau_m}\right)}+\frac{T_L^{(\mathrm{VII})}\left(t^{(\mathrm{VII})}\right)}{T_{\max \_ \text {fict }}} \\ =\left(0.01583-\frac{82.155}{3734.3}\right) e^{\left(-\frac{t^{(\mathrm{VII})}}{\tau_m}\right)}+\frac{82.155}{3734.3} \\ s\left(t^{(\mathrm{VII})}\right)=-0.00617 e\left(-\frac{t^{(\mathrm{VII})}}{\tau_m}\right)+0.022 \\ s\left(t^{(\mathrm{VII})}=1 \mathrm{~s}\right)=0.0219=s\left(t^{(\mathrm{VIII})}=0\right) \text { and } \\ s\left(t^{(\mathrm{VII})}=0.5 \mathrm{~s}\right)=0.02115 . \end{gathered}

Region VIII. For region \text { VIII }\left(0 \leq t^{(V I I I)} \leq 1 \mathrm{~s}\right) one obtains from Fig. E6.8.1 the load torque

T_L^{(\text {VIII) }}=0.2 \cdot T_{\mathrm{rat}}=32.86 \mathrm{Nm}

With Eq. E6.8-11

\begin{aligned} s\left(t^{(\mathrm{VIII})}\right) & =\left(s\left(t^{(\mathrm{VIII})}=0\right)-\frac{T_L^{(\mathrm{VIII})}\left(t^{(\mathrm{VIII})}\right)}{T_{\max \_ \text {fict }}}\right) \cdot e\left(-\frac{t^{(\mathrm{VIII})}}{\tau_m}\right)+\frac{T_L^{(\mathrm{VIII})}\left(t^{(\mathrm{VIII})}\right)}{T_{\max _{-} \text {fict }}} \\ & =\left(0.0219-\frac{32.86}{3734.3}\right) e\left(-\frac{t^{(\mathrm{VIII})}}{\tau_m}\right)+\frac{32.86}{3734.3} \\ s\left(t^{(\mathrm{VIII})}\right) & =0.0131 e\left(\frac{t^{(\mathrm{VIII})}}{\tau_m}\right)+0.0088 \end{aligned}.

s\left(t^{(\mathrm{VIII})}=1 \mathrm{~s}\right)=0.0090 \approx s\left(t^{(\mathrm{I})}=0\right)=0.0088. That is, the periodicity of the slip s(t) is about satisfied. s\left(t^{(\mathrm{VIII})}=0.5 \mathrm{~s}\right)=0.0106. The plot of s(t) is given in Fig. E6.8.3.

e) Calculation of the torque T(t) and its plot from t=0 to t=5 s. From \frac{T}{T_{\max \_ \text {fict }}}=\frac{s}{1} follows

T=s \cdot T_{max \_ fict}          (E6.8-13)

Region I

T\left(t^{(\mathrm{I})}\right)=s\left(t^{(\mathrm{I})}\right) \cdot T_{\max _{-} \text {fit }}              (E6.8-14)

\begin{aligned} & T\left(t^{(\mathrm{I})}=0\right)=0.0088 .3734 .3=32.86 \mathrm{Nm} \equiv 0.2 \mathrm{pu}^* \\ & T\left(t^{(\mathrm{I})}=0.2 \mathrm{~s}\right)=266.9 \mathrm{Nm} \equiv 1.62 \mathrm{pu} \\ & T\left(t^{(\mathrm{I})}=0.4 \mathrm{~s}\right)=372.7 \mathrm{Nm} \equiv 2.27 \mathrm{pu} \end{aligned}

Region II

\begin{aligned} & T\left(t^{(\mathrm{II})}=0 \mathrm{~s}\right)=372.7 \mathrm{Nm} \equiv 2.27 \mathrm{pu} \\ & T\left(t^{(\mathrm{II})}=0.2 \mathrm{~s}\right)=186.5 \mathrm{Nm} \equiv 1.14 \mathrm{pu} \\ & T\left(t^{(\mathrm{II})}=0.4 \mathrm{~s}\right)=102.3 \mathrm{Nm} \equiv 0.62 \mathrm{pu} \end{aligned}

Region III

\begin{aligned} & T\left(t^{(\mathrm{III})}=0 \mathrm{~s}\right)=102.3 \mathrm{Nm} \equiv 0.62 \mathrm{pu} \\ & T\left(t^{(\mathrm{III})}=0.3 \mathrm{~s}\right)=259.8 \mathrm{Nm} \equiv 1.58 \mathrm{pu} \\ & T\left(t^{(\mathrm{III})}=0.6 \mathrm{~s}\right)=307.7 \mathrm{Nm} \equiv 1.87 \mathrm{pu} \end{aligned}

Region IV

\begin{aligned} & T\left(t^{(\mathrm{IV})}=0 \mathrm{~s}\right)=307.7 \mathrm{Nm} \equiv 1.87 \mathrm{pu} \\ & T\left(t^{(\mathrm{IV})}=0.2 \mathrm{~s}\right)=157.1 \mathrm{Nm} \equiv 0.96 \mathrm{pu} \\ & T\left(t^{(\mathrm{IV})}=0.4 \mathrm{~s}\right)=89.1 \mathrm{Nm} \equiv 0.54 \mathrm{pu} \end{aligned}

Region V

\begin{aligned} & T\left(t^{(\mathrm{V})}=0 \mathrm{~s}\right)=89.1 \mathrm{Nm} \equiv 0.54 \\ & T\left(t^{(\mathrm{V})}=0.4 \mathrm{~s}\right)=148.9 \mathrm{Nm} \equiv 0.91 \mathrm{pu} \\ & T\left(t^{(\mathrm{V})}=0.8 \mathrm{~s}\right)=161.3 \mathrm{Nm} \equiv 0.98 \mathrm{pu} \end{aligned}

Region VI

\begin{aligned} & T\left(t^{(\mathrm{NI})}=0 \mathrm{~s}\right)=161.3 \mathrm{Nm} \equiv 0.982 \mathrm{pu} \\ & T\left(t^{\mathrm({VI})}=0.2 \mathrm{~s}\right)=9.91 \mathrm{Nm} \equiv 0.55 \mathrm{pu} \\ & T\left(t^{(\mathrm{VI})}=0.4 \mathrm{~s}\right)=59.1 \mathrm{Nm} \equiv 0.36 \mathrm{pu} \end{aligned}

Region VII

\begin{aligned} & T\left(t^{(\mathrm{VII})}=0 \mathrm{~s}\right)=59.1 \mathrm{Nm} \equiv 0.36 \mathrm{pu}, \\ & T\left(t^{(\mathrm{VII})}=0.5 \mathrm{~s}\right)=79 \mathrm{Nm} \equiv 0.48 \mathrm{pu}, \\ & T\left(t^{(\mathrm{VII})}=1 \mathrm{~s}\right)=81.8 \mathrm{Nm} \equiv 0.50 \mathrm{pu} \end{aligned}

Region VIII

\begin{aligned} & T\left(t^{(\mathrm{VIII})}=0 \mathrm{~s}\right)=81.8 \mathrm{Nm} \equiv 0.50 \mathrm{pu} \\ & T\left(t^{(\mathrm{VIII})}=0.5 \mathrm{~s}\right)=39.6 \mathrm{Nm} \equiv 0.24 \mathrm{pu} \\ & T\left(t^{(\mathrm{VIII})}=1 \mathrm{~s}\right)=33.6 \mathrm{Nm} \equiv 0.204 \mathrm{pu} \end{aligned}

f) Point-wise calculation of the stator current \left|\widetilde{I}_s(t)\right| for the eight different regions. For the calculation of the stator current \left|\widetilde{I}_s(t)\right| the equivalent circuit of Fig. E6.8.5 is employed.
For s\left(t^{(\mathrm{I})}=0\right)=0.0088 one gets

\frac{R_r^{\prime}}{s}=\frac{0.2}{0.0088}=22.73 \Omega

* referred to rated torque T_{rat}=164.31 Nm. Note that the motor torque is at any time less than T_{max}=391.32 Nm. The motor torque T(t) is proportional to the slip s(t) and is depicted in Fig. E6.8.4.

With \widetilde{E}=221.75 \mathrm{~V} \angle 0^{\circ} the rotor current becomes

\widetilde{I}_{\mathrm{r}}^{\prime}=\frac{\widetilde{E}}{\left(\frac{R_r^{\prime}}{s}+j X_r^{\prime}\right)}=\frac{221.75 \mathrm{~V} \angle 0^{\circ}}{(22.73+j)}=(9.737-j 0.428) \mathrm{A} .

The magnetizing current is

\widetilde{I}_m=\frac{\widetilde{E}}{j X_m}=\frac{221.75 \angle 0^{\circ}}{j 30 \Omega}=-j 7.392 \mathrm{~A}

and the stator current

\widetilde{I}_s=\widetilde{I}_m+\widetilde{I}_{\mathrm{r}}^{\prime}=(9.737-\mathrm{j} 7.82) \mathrm{A}

where \tilde{E} is the reference phasor.
Table E6.8.1 summarizes the point-wise calculation of the rms values of \left|\widetilde{I}_s(t)\right| over a load cycle.

g) Figure E6.8.6 shows the plot of \left|\widetilde{I}_s(t)\right| as a function of time and Fig. E6.8.7 depicts \left|\widetilde{I}_s(t)\right|^2.

h) The rms current value of the stator current I_{s\_rms\_actual} for the load cycle of Fig. E6.8.1 can be calculated from Fig. E6.8.7 using

I_{s\_rms\_actual}=\sqrt{\frac{1}{T} \int_t^{t+T}\left|\widetilde{I}_s(t)\right|^2 \mathrm{~d} t}

The evaluation of this integral can be done mathematically or graphically. The graphic evaluation leads to I_{s\_rms\_actual}=47.7A.

i) Comparison of rated I_{s\_rms\_rat} and actual current I_{s\_rms\_actual}. Is the motor over- or underdesigned?

The losses of an induction motor are about proportional to the square of the stator current I_{s\_rms}. The ratio \left(\frac{I_{s \_rms \text { actual }}}{I_{s\_rms\_ rat }}\right)^2=\left(\frac{47.7}{49.82}\right)^2=0.91 indicates that the motor rating can be reduced by 9%, that is, P_{out\_reduced}=0.91 P_{out\_rat}=0.91 29.594 kW= 26.93 kW or 36.1 hp.

Let us assume that the stator current is larger than the rated current, say, I_{s\_rms\_high}=52A; then the motor will experience a lifetime reduction – if the service factor of the motor is 1.0 – based on the ratio \left(\frac{I_{s_{-}r m s \_\_ \text {high }}}{I_{s_{-}r m s_{-} \mathrm{rat}}}\right)^2=\left(\frac{52}{49.82}\right)^2=1.09, that is, the losses are about △P_{loss}=9% larger than the rated losses. This leads for a steadystate rated temperature of the hottest spot of T_2=85 °C≡273+85=358 kelvin at an ambient temperature of T_{amb}=40 °C to an additional temperature rise of △T=9% or △T=4.05 °C. With an activation energy of E=0.74 eV and a rated lifetime of 40 years the reduced lifetime of the three-phase induction motor is with △T=4.05 °C.

t_1=40 e^{-8.58 \cdot 10^3}\left(\frac{\Delta T}{358(358+\Delta T)}\right)=30.6 \text { years. }

Most induction motors are designed with a service factor of 1.1–1.15, that is, the motor can be overloaded by 10 to 15%. If this motor were designed with a service factor of 1.10 then no lifetime reduction would occur for a stator current of I_{s\_rms\_high}=52 A.

Table E6.8.1 Point-Wise Calculation of the rms Values of \left|\tilde{I}_s(\mathrm{t})\right|.
\begin{array}{l|l|l|l|l|l}\text { Region I }&\left|\tilde{I}_s\right|[\mathrm{A}]&\text { Region II }&\left|\widetilde{I}_s\right|[\mathrm{A}]&\text { Region III }&\left|\tilde{I}_s\right|[\mathrm{A}]\\ \hline s\left(t^{(\mathrm{I})}=0\right)=0.0088 & 12.49 & s\left(t^{(\mathrm{II})}=0\right)=0.0998 & 102.69 & s\left(t^{(\mathrm{III})}=0\right)=0.0274&31.95 \\ s\left(t^{(\mathrm{I})}=0.2 \mathrm{~s}\right)=0.07147 & 77.44 & s\left(t^{(\mathrm{II})}=0.2 \mathrm{~s}\right)=0.04994 & 56.04 & s\left(t^{(\mathrm{III})}=0.3 \mathrm{~s}\right)=0.06957&75.56 \\ s\left(s^{(\mathrm{I})}=0.4 \mathrm{~s}\right)=0.0998 & 102.69 & s\left(t^{(\mathrm{II})}=0.4 \mathrm{~s}\right)=0.0274 & 31.95 & s\left(t^{(\mathrm{III})}=0.6 \mathrm{~s}\right)=0.0824&84.47 \\ \hline \end{array}\\ \begin{array}{l|l|l|l|l|l}\text { Region IV }&\left|\tilde{I}_s\right|[\mathbf{A}]&\text { Region V }&\left|\tilde{I}_s\right|[\mathbf{A}]&\left|\tilde{I}_s\right|[\mathbf{A}]&\left|\tilde{I}_{\mathrm{s}}\right|[\mathrm{A}]\\ \hline s\left(t^{(\mathrm{IV})}=0\right)=0.082 & 84.47 & s\left(t^{(\mathrm{V})}=0\right)=0.02385 & 28.11 & \left.s\left(t^{\mathrm{VI}}\right)=0\right)=0.0432&48.92 \\ s\left(t^{(\mathrm{IV})}=0.2 \mathrm{~s}\right)=0.04208 & 47.76 & s\left(t^{(\mathrm{V})}=0.4 \mathrm{~s}\right)=0.03987 & 45.38 & s\left(t^{(\mathrm{VI})}=0.2 \mathrm{~s}\right)=0.0244&28.706 \\ s\left(t^{(\mathrm{IV})}=0.4 \mathrm{~s}\right)=0.02385 & 28.11 & s\left(t^{(\mathrm{V})}=0.8 \mathrm{~s}\right)=0.0432 & 48.92 & s\left(t^{(\mathrm{VI})}=0.4 \mathrm{~s}\right)=0.01583&19.53 \\ \hline \end{array}\\ \begin{array}{l|l|l|l}\text { Region VII }&\left|\tilde{I}_s\right|[\mathrm{A}]&\text { Region VIII }&\left|\tilde{I}_s\right|[A]\\\hline s\left(t^{(\mathrm{VII})}=0\right)=0.01583 & 19.53 & s\left(t^{(\mathrm{VIII})}=0\right)=0.0219 & 26 \\ s\left(t^{(\mathrm{VII})}=0.5 \mathrm{~s}\right)=0.02115 & 25.19 & s\left(t^{(\mathrm{VIII})}=0.5 \mathrm{~s}\right)=0.0106 & 14.2 \\ s\left(t^{(\mathrm{VII})}=1 \mathrm{~s}\right)=0.0219 & 26 & s\left(t^{(\mathrm{VIII})}=1 \mathrm{~s}\right)=0.009 & 12.68 \\ \hline \end{array}

381c4d27-008a-4ed4-b128-484b9ea53af7
398376c8-82a2-40a6-8d80-a62fadd2c5f6
0140a0f0-d02a-48b8-8d2e-6af4b44fb159
f11023ef-7680-41f2-bf74-439812cb22a3
76ad82b8-ddad-466d-a61f-7a5df928ae18

Related Answered Questions