Question 3.14: A cone of height H is floating in water with its vertex down......

A cone of height H is floating in water with its vertex downward (Figure 3.32). If h is the depth of immersion and 20 is the angle of the cone at vertex, show that for stable equilibrium,

sec^{2}  \theta =\frac{H}{h}

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

If G is the centre of gravity of the cone,

OG=(\frac{3}{4} )H

If B is the centre of buoyancy,

OB=(\frac{3}{4} )h

and if r is the radius of the cone at water surface, then

r = h \tan \theta

Here θ is the half of the cone at vertex.

Volume of water displaced by the cone = (\frac{1}{3} )\pi r^{2}h

Moment of inertia I at the water section = (\frac{\pi }{64} )(2r)^{4}=\frac{\pi r^{4} }{4}

Using the formula,

BM=\frac{\pi r^{4} }{4\times ({1}/{3})\pi r^{2}h }=\frac{3}{4}\frac{r^{2} }{h}=\frac{3}{4}h\tan ^{2}\theta

If M is the metacentre, then

OM= OB + BM = (\frac{3}{4} )h+(\frac{3}{4} )h\tan ^{2} \theta=(\frac{3}{4} )h(1+\tan ^{2} \theta )=(\frac{3}{4} )h  sec^{2} \theta

For stable equilibrium OM > OG, i.e., metacentre M should be above G.

Or                                                (\frac{3}{4} )h  sec^{2}  \theta \gt (\frac{3}{4} )H

Therefore,                                    sec^{2}  \theta =\frac{H}{h}

13.4

Related Answered Questions