Form an incidence and reduced incidence matrix from the graph of the network in Figure 3.8a.
The bus incidence matrix is formed from the graph of the network in Figure 3.8c:
This matrix is singular. The matrix without the last row pertaining to the reference node, which is shown shaded, is a reduced incidence matrix. It can be partitioned as follows:
We can therefore write:
A_{(n-1), e}=(A_{b})_{(n-1), (n-1)} × (A_{L})_{(n-1), I} (3.35)
Figure 3.8b ignores the shunt capacitance of the lines. Referring to the graph in Figure 3.8c, we can write
\left|\begin{matrix} 1 & 0 & 0 & 0 &-1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 \end{matrix} \right| \left|\begin{matrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \\ I_{6} \\ I_{7} \\ I_{8} \\ I_{9} \end{matrix} \right| = \left|\begin{matrix} I_{1j} \\ I_{2j} \\ I_{3j} \\ I_{4j} \end{matrix} \right| (3.36)
where I_{1j}, I_{2j} are the injected currents at nodes I, 2, . . .
In abbreviated form
\overline{A} \ \overline{I}_{pr} =\overline{I} (3.37)
where
\overline{I}_{pr} is the column vector of the branch currents
\overline{I} is column vector of the injected currents
With respect to voltages,
\left|\begin{matrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{5} \\ V_{6} \\ V_{7} \\ V_{8} \\ V_{9} \end{matrix} \right| =\left|\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{matrix} \right| \left|\begin{matrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{matrix} \right| (3.38)
Referring to Figure 3.8b,
V_{5} = V_{2} – V_{1}
V_{6} = V_{1} – V_{3}
V_{7} = V_{1} – V_{4} (3.39)
V_{8} = V_{4} – V_{2}
V_{9} = V_{3} – V_{4}
Equation 3.38 can be written as
\overline{V}_{pr} = \overline{A}^t V (3.40)
where
\overline{V}_{pr} is the column vector of the primitive branch voltage drops
\overline{V} is the vector of the bus voltages measured to the common node
From these relations a reader can prove Equation 3.30. Using this equation, the bus admittance matrix is
This matrix could be formed by simple examination of the network.
e/n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1 | -1 | 1 | 1 | |||||
2 | 1 | 1 | -1 | ||||||
3 | 1 | -1 | 1 | ||||||
4 | 1 | -1 | 1 | -1 | |||||
0 | -1 | -1 | -1 | -1 |
e/(n-1) | Branches | Links |
Buses | A_{b} | A_{L} |