Question 1.P.7: If R = 10 Ω, find V 2 in figure given below. (a) 22 V (b) 23......

If R = 10 Ω, find V_2 in figure given below.

(a) 22 V (b) 23.4 V (c) 10 V (d) 21.4 V

1.1.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Apply nodal analysis and KCL at node 1,
we have

\frac{V_1-100}{20}+\frac{V_1}{20}+\frac{V_1-V_2}{10}=0       (i)

Applying KCL at node 2, we have

\frac{V_2}{30}+\frac{V_2}{30}+\frac{V_2-V_1}{10}=0          (ii)

Solving Eq. (i), we have

\begin{aligned} & V_1-100+V_1+2 V_1+2 V_2=0 \\ & \Rightarrow 4 V_1-2 V_2=100 \end{aligned}

From Eq. (ii), we get

\begin{gathered} V_2+V_2+3 V_2-3 V_1=0 \\ -3 V_1+5 V_2=0 \\ {\left[\begin{array}{rr} 4 & -2 \\ -3 & 5 \end{array}\right]\left[\begin{array}{l} V_1 \\ V_2 \end{array}\right]=\left[\begin{array}{r} 100 \\ 0 \end{array}\right]} \\ \Delta_1=\left[\begin{array}{rr} 100 & -2 \\ 0 & 5 \end{array}\right]=500, \Delta_2=\left[\begin{array}{rr} 4 & 100 \\ -3 & 0 \end{array}\right]=300 \text { and } \\ \Delta=\left[\begin{array}{rr} 4 & -2 \\ -3 & 5 \end{array}\right]=20-6=14 \end{gathered}

We have

V_1=\frac{\Delta_1}{\Delta}=\frac{500}{14}=35.7  V \text { and } V_2=\frac{\Delta_2}{\Delta}=\frac{300}{14}=21.4  V

Related Answered Questions

Question: 1.SGPYQ.27

Verified Answer:

i_{ L }\left(0^{-}\right)=\frac{\text { To...
Question: 1.SGPYQ.5

Verified Answer:

At node P, \begin{aligned} & 2+\frac{V...
Question: 1.SGPYQ.7

Verified Answer:

The equivalent circuit is Applying nodal analysis ...