Consider that there is a mutual coupling of Z_{M} = j0.4 between the branch elements 4 and 5 as shown in Figure 3.4. Recalculate the bus admittance matrix.
The primitive impedance matrix is
\overset{ \ \rightharpoonup \ }{ Z}_{P} =\left|\begin{matrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0& 0& 3 & 0 &0 \\ 0 &0&0& j0.2 & j0.4 \\ 0 & 0& 0 & j0.4 & j0.3\end{matrix} \right|For the coupled branch,
\overline{Y}_{jj} = \frac{1}{\overline{Z}_{jj}}Therefore,
\left|\begin{matrix} j0.2 & j0.4 \\ j0.4 & j0.3 \end{matrix} \right|^{-1} =\left|\begin{matrix} -j3 & j4 \\ j4 & -j2 \end{matrix} \right|Then the primitive Y matrix is
\overline{Y}_{P}=\left|\begin{matrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.333 & 0 & 0 \\ 0 & 0 & 0 & j3 & -j4 \\ 0 & 0 & 0 & -j4 & j2 \end{matrix} \right|Then the Y bus matrix is
\overline{Y}_{B}=\left|\begin{matrix} 1+j3 & j & -4j \\ j & 0.5-j3 & j2 \\ -j4 & 2j & 0.333+j2 \end{matrix} \right|If similar currents as in Example 3.1 are injected at buses 1 and 3, then