Question 7.PS.5: Tennis Balls and Electrons At Wimbledon, tennis serves routi......

Tennis Balls and Electrons

At Wimbledon, tennis serves routinely reach more than 100 mi/h. Compare the de Broglie wavelength (nm) of an electron moving at a velocity of 5.0×106 m/s5.0 × 10^6  m/s with that of a tennis ball traveling at 56.0 m/s(125 mi/h)56.0  m/s (125  mi/h). Masses: electron = 9.11×1031  kg9.11 × 10^{-31}   kg; tennis ball = 0.0567 kg0.0567  kg.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The wavelength of the electron is much longer than that of the tennis ball: electron = 0.15 nm0.15  nm; tennis ball = 2.09×1025  nm2.09 × 10^{-25}   nm.

Strategy and Explanation We can substitute the mass and velocity into the de Broglie wave equation to calculate the corresponding wavelength. Planck’s constant, bb, is

6.626×1034 Js6.626 × 10^{-34}  J⋅s, and 1 J=1 kgm2s21  J = \frac{1  kg⋅m^2}{s^2} so that b= 6.626×1034 kgm2 s1.b =  6.626 × 10^{-34}  kg⋅m^2  s^{-1}.

For the electron:

λ=6.626×1034 kgm2 s1(9.11×1031 kg)(5.0×106 m/s)=1.5×1010 m×1 nm109 m=0.15 nmλ = \frac{6.626 × 10^{-34}  kg⋅m^2  s^{-1}}{(9.11 × 10^{-31}  kg)(5.0 × 10^6  m/s)} = 1.5 × 10^{-10}  m × \frac{1  nm}{10^{-9}  m} = 0.15  nm

For the tennis ball:

λ=6.626×1034 kgm2 s1(0.0567 kg)(56.0 m/s)=2.09×1034 m×1 nm109 m=2.09×1025 nmλ = \frac{6.626 × 10^{-34}  kg⋅m^2  s^{-1}}{(0.0567  kg)(56.0  m/s)} = 2.09 × 10^{-34}  m × \frac{1  nm}{10^{-9}  m} = 2.09 × 10^{-25}  nm

The wavelength of the electron is in the X-ray region of the electromagnetic spectrum (Figure 7.1, ← p. 222). The wavelength of the tennis ball is far too short to observe.

7.1

Related Answered Questions

Question: 7.PS.9

Verified Answer:

Strategy and Explanation A neutral Se atom has the...