Question 18.10: Calculating Equilibrium Concentrations for a Polyprotic Acid......

Calculating Equilibrium Concentrations for a Polyprotic Acid

Problem Ascorbic acid (H_2C_6H_6O_6;  represented as H_2Asc for this problem), known as vitamin C, is a diprotic acid (K_{a1}  =  1.0×10^{−5} and K_{a2}  =  5×10^{−12}) found in citrus fruit. Calculate [HAsc^−],  [Asc^{2−}], and the pH of 0.050 M H_2Asc.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan We know the initial concentration (0.050 M) and both K_a’s for H_2Asc, and we have to calculate the equilibrium concentrations of all species and convert [H_3O^+] to pH. We first write the equations and K_a expressions. Because K_{a1}  >>  K_{a2}, we can assume that the first dissociation produces almost all the H_3O^+:  [H_3O^+]_{\text{from }H_2Asc}  >>  [H_3O^+]_{\text{from }HAsc^−}. Also, because K_{a1} is small, the amount of H_2Asc that dissociates can be neglected. We set up a reaction table for the first dissociation, with x  =  [H_2Asc]_{\text{dissoc}}, and then we solve for [H_3O^+] and [HAsc^−]. Because the second dissociation occurs to a much lesser extent, we can substitute values from the first dissociation directly to find [Asc^{2−}] from the second.

Solution Writing the equations and K_a expressions:
              H_2Asc(aq)  +  H_2O(l) \xrightleftharpoons[]  HAsc^−(aq)  +  H_3O^+(aq)
              K_{a1}  =  \frac{[HAsc^−][H_3O^+]}{[H_2Asc]}  =  1.0×10^{−5}
              HAsc^−(aq)  +  H_2O(l)  \xrightleftharpoons[]  Asc^{2−}(aq)  +  H_3O^+(aq)
              K_{a2}  =  \frac{[Asc^{2−}][H_3O^+]}{[HAsc^−]}  =  5×10^{−12}

Setting up a reaction table (Table 1) with x  =  [H_2Asc]_{\text{dissoc}}  =  [HAsc^−]  ≈  [H_3O^+]:

Making the assumptions:
1. Because K_{a2}  <<  K_{a1},  [H_3O^+]_{\text{from }HAsc^−}  <<  [H_3O^+]_{\text{from }H_2Asc}. Therefore,
             [H_3O^+]_{\text{from }H_2Asc}  ≈  [H_3O^+]
2. Because K_{a1} is small, [H_2Asc]_{\text{init}}  −  x  =  [H_2Asc]  ≈  [H_2Asc]_{\text{init}}. Thus,
             [H_2Asc]  =  0.050  M  −  x  ≈  0.050  M
Substituting into the expression for K_{a1} and solving for x:

             K_{a1}  =  \frac{[H_3O^+][HAsc^−]}{[H_2Asc]}  =  1.0×10^{−5}  = \frac{x^2}{0.050  −  x}  ≈  \frac{x^2}{0.050}
             x  =  [HAsc^−]  ≈  [H_3O^+]  ≈  7.1×10^{−4}  M
             pH  =  −\log  [H_3O^+]  =  −\log  (7.1×10^{−4})  =  3.15

Checking the assumptions:

1. [H_3O^+]_{\text{from }HAsc^−}  <<  [H_3O^+]_{\text{from }H_2Asc}: For any second dissociation that does occur,

            K_{a2}  =  \frac{[H_3O^+][Asc^{2−}]}{[HAsc^−]}  =  5×10^{−12}  =  \frac{(x)(x)}{7.1×10^{−4}}
            x  =  [H_3O^+]_{\text{from }HAsc^−}  =  6×10^{−8}  M

This is even less than [H_3O^+]_{\text{from }H_2O}, so the assumption is justified.

2. [H_2Asc]_{\text{dissoc}}  <<  [H_2Asc]_{\text{init}}:  \frac{7.1×10^{−4}  M}{0.050  M}  ×  100  =  1.4\% (<5%; assumption is justified).
Also, note that           \frac{[H_2Asc]_{\text{init}}}{K_{a1}}  =  \frac{0.050 }{1.0×10^{−5}}  =  5000  >  400

Using the equilibrium concentrations from the first dissociation to calculate [Asc^{2−}]:

            K_{a2}  =  \frac{[H_3O^+][Asc^{2−}]}{[HAsc^−]}      and      [Asc^{2−}]  =  \frac{(K_{a2})[HAsc^−]}{[H_3O^+]}
            [Asc^{2−}]  =  \frac{(5×10^{−12})(7.1×10^{−4})}{7.1×10^{−4}}  =  5×10^{−12}  M

Check K_{a1}  > >  K_{a2}, so it makes sense that [HAsc^−]  >>  [Asc ^{2−} ] because Asc^{2−} is produced only in the second (much weaker) dissociation. Both K_a’s are small, so all concentrations except [H_2Asc] should be much lower than the original 0.050 M.

Table 1

Concentration (M) \mathbf{H_2Asc(aq)    +     H_2O(l)        \xrightleftharpoons[]{}      H_3O^+(aq)      +        HAsc^−(aq)}
Initial 0.50                               —                                   0                                      0
Change −x                                  —                                  +x                                   +x
Equilibrium 0.50 − x                        —                                   x                                       x

Related Answered Questions