Question 14.16: Calculating the pH of a Basic Salt Solution Calculate the pH......

Calculating the pH of a Basic Salt Solution

Calculate the pH of a 0.10 M solution of NaCN; KaK_a for HCN is 4.9 × 101010^{-10} .

STRATEGY

Use the procedure summarized in Figure 14.7.

fig14.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1 The species present initially are Na+Na^+ (inert), CNCN^- (base), and H2OH_2O (acid or base).

Step 2 There are two possible proton-transfer reactions:

CN(aq)+H2O(l)HCN(aq)+OH(aq)KbH2O(l)+H2O(l)H3O+(aq)+OH(aq)Kw\begin{array}{ll}\mathrm{CN}^{-}(a q)+\mathrm{H}_2 \mathrm{O}(l) \rightleftharpoons \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q) & K_{\mathrm{b}} \\\mathrm{H}_2 \mathrm{O}(l)+\mathrm{H}_2 \mathrm{O}(l) \rightleftharpoons \mathrm{H}_3 \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) & K_{\mathrm{w}}\end{array}

Step 3 As shown in Worked Example 14.14b, Kb=Kw/(Ka for HCN)K_b = K_w/(K_a \ for \ HCN) = 2.0 × 10510^{-5} . Because KbKw,K_{\mathrm{b}} \gg K_{\mathrm{w}}, CNCN^- is a stronger base than H2OH_2O and the principal reaction is proton transfer from H2OH_2O to CNCN^-.

Step 4

 Principal Reaction                  CN(aq)+H2O(l)HCN(aq)+OH(aq) Equilibrium concentration (M)0.10xxx\begin{array}{lccc}\text { Principal Reaction } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{CN^-}(a q)+\mathrm{H}_2 \mathrm{O}(l) & \rightleftharpoons \mathrm{HCN}(a q)+ &\mathrm{OH^-}(a q) \\\hline \text { Equilibrium concentration }(\mathrm{M}) & 0.10-x & x & x\end{array}

Step 5 The value of x is obtained from the equilibrium equation:

Kb=2.0×105=[HCN][OH][CN]=(x)(x)(0.10x)x20.10x=[OH]=1.4×103M\begin{aligned}& K_{\mathrm{b}}=2.0 \times 10^{-5}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}=\frac{(x)(x)}{(0.10-x)} \approx \frac{x^2}{0.10} \\& x=\left[\mathrm{OH}^{-}\right]=1.4 \times 10^{-3} \mathrm{M}\end{aligned}

Step 7    [H3O+]=Kw[OH]=1.0×10141.4×103=7.1×1012\left[\mathrm{H}_3 \mathrm{O}^{+}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{1.4 \times 10^{-3}}=7.1 \times 10^{-12}

Step 8     pH=log(7.1×1012)=11.15\mathrm{pH}=-\log \left(7.1 \times 10^{-12}\right)=11.15

The solution is basic, which agrees with the blue color of the indicator in Figure 14.9.

14.9

Related Answered Questions