Question 13.2: Find  d / dx (x^n+1 / n + 1 + c) and hence deduce that  ∫ x^......

Find  ddx(xn+1n+1+c)\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{n+1}}{n+1}+c\right)  and hence deduce that   xn dx=xn+1n+1+c\int x^n \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Table 10.1 we find

ddx(xn+1n+1+c)=ddx(xn+1n+1)+ddx(c) using the linearity  of differentiation \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{n+1}}{n+1}+c\right)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{n+1}}{n+1}\right)+\frac{\mathrm{d}}{\mathrm{d} x}(c) \quad \begin{aligned}& \text { using the linearity } \\& \text { of differentiation }\end{aligned}

=1n+1ddx(xn+1)+ddx(c) again using the  linearity of differentiation =\frac{1}{n+1} \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n+1}\right)+\frac{\mathrm{d}}{\mathrm{d} x}(c) \quad \begin{aligned}& \text { again using the } \\& \text { linearity of differentiation }\end{aligned}

=1n+1{(n+1)xn}+0 using Table 10.1=xn\begin{aligned}& =\frac{1}{n+1}\left\{(n+1) x^n\right\}+0 \quad \text { using Table } 10.1 \\& =x^n\end{aligned}

Consequently, reversing the process we find

xn dx=xn+1n+1+c\int x^n \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c

as required. Note that this result is invalid if n = −1 and so this result could not be applied to the integral  (1/x)dx\int(1 / x) d x.

Table 10.1
Derivatives of commonly used functions.
Function, y(x) Derivative, y′ Function, y(x) Derivative, y′
constant 0 cos1(ax+b)\cos ^{-1}(a x+b) a1(ax+b)2\frac{-a}{\sqrt{1-(a x+b)^2}}
xnx^n nxn1n x^{n-1}
ex\mathrm{e}^x ex\mathrm{e}^x tan1(ax+b)\tan ^{-1}(a x+b) a1+(ax+b)2\frac{a}{1+(a x+b)^2}
ex\mathrm{e}^{-x} ex-\mathrm{e}^{-x}
eax\mathrm{e}^{a x} aeaxa \mathrm{e}^{a x} sinh(ax+b)\sinh (a x+b) acosh(ax+b)a \cosh (a x+b)
cosh(ax+b)\cosh (a x+b) asinh(ax+b)a \sinh (a x+b)
lnx\ln x 1x\frac{1}{x} tanh(ax+b)\tanh (a x+b) asech2(ax+b)a \operatorname{sech}^2(a x+b)
sinx\sin x cosx\cos x cosech(ax+b)\operatorname{cosech}(a x+b) acosech(ax+b)×-a \operatorname{cosech}(a x+b) \times
cosx\cos x sinx-\sin x coth(ax+b)\operatorname{coth}(a x+b)
sin(ax+b)\sin (a x+b) acos(ax+b)a \cos (a x+b) sech(ax+b)\operatorname{sech}(a x+b) asech(ax+b)×-a \operatorname{sech}(a x+b) \times
cos(ax+b)\cos (a x+b) asin(ax+b)-a \sin (a x+b) tanh(ax+b)\tanh (a x+b)
tan(ax+b)\tan (a x+b) asec2(ax+b)a \sec ^2(a x+b) coth(ax+b)\operatorname{coth}(a x+b) acosech2(ax+b)-a \operatorname{cosech}^2(a x+b)
cosec(ax+b)\operatorname{cosec}(a x+b) acosec(ax+b)cot(ax+b)-a \operatorname{cosec}(a x+b) \cot (a x+b) sinh1(ax+b)\sinh ^{-1}(a x+b) a(ax+b)2+1\frac{a}{\sqrt{(a x+b)^2+1}}
sec(ax+b)\sec (a x+b) asec(ax+b)tan(ax+b)a \sec (a x+b) \tan (a x+b) a(ax+b)21\frac{a}{\sqrt{(a x+b)^2-1}}
cot(ax+b)\cot (a x+b) acosec2(ax+b)-a \operatorname{cosec}^2(a x+b) cosh1(ax+b)\cosh ^{-1}(a x+b) a(ax+b)21\frac{a}{\sqrt{(a x+b)^2-1}}
sin1(ax+b)\sin ^{-1}(a x+b) a1(ax+b)2\frac{a}{\sqrt{1-(a x+b)^2}} tanh1(ax+b)\tanh ^{-1}(a x+b) a1(ax+b)2\frac{a}{1-(a x+b)^2}

Related Answered Questions

Question: 13.11

Verified Answer:

Figure 13.13 illustrates the required area. From t...
Question: 13.9

Verified Answer:

Figure 13.11 illustrates the required area. [latex...
Question: 13.8

Verified Answer:

\begin{aligned}\text { Area } & =\int_1...
Question: 13.7

Verified Answer:

(a) Let I stand for  \int_1^2 x^2+1 d x[/la...
Question: 13.6

Verified Answer:

(a) Using the identities in Table 3.1 we find [lat...
Question: 13.5

Verified Answer:

Powers of trigonometric functions, for example  [l...
Question: 13.1

Verified Answer:

We need to find a function which, when differentia...