Question 19.9: Comparison of Energy Use of Different Secondary Systems unde......

Comparison of Energy Use of Different Secondary Systems under Part Load

(a) Single-Duct VAV System (Figure 19.15b)

Consider the same building with two zones as in Example 19.8 for which a VAV system was sized. Analyze this system under part-load operation under the following specications:

Given:

1. Outdoor air conditions: T_{db,o} = 77°F and W_{o} = 0.0126  lb_{w}/lb_{a}.
2. Ventilation airflow rate \dot{m}_{a,o} = 167.2  lb_{a}/min (same as the peak summer design flow rate).
3. The design flow rates to each zone:
\dot{m}_{a,A} = 780.7  lb_{a}/min   and  \dot{m}_{a,B} = 358.7  lb_{a}/min.
4. Cold deck temperature T_{3} = 54°F and 85% RH (resulting in W_{3} = 0.0077  lb_{w}/lb_{a}).
5. The supply airflow to the zones cannot be reduced to less than 60% of the fullload design value by mass.
6. Fan efficiency is 60%.
Assumptions:
1. The latent load in the interior zone is unchanged with outdoor temperature.
2. Ignore factors not included in the list given earlier, such as duct heat losses and gains.
3. The location is assumed to be at sea level.
4. Peak loads are coincident; no diversity adjustment is used.
5. Supply fan air temperature rise is 1°F, and assume the same 3 inWG pressure drop in the duct.
6. The preheat coil is inactive.

Find: Coil loads and fan power
Lookup values: Specic volume v_{0} = 13.95  ft^{3}/lb_{a} and  v_{3}= 13.13  ft_{3}/lb_{a}
(i) Outdoor airow rate is specied: \dot{m}_{a,0} = 167.2  lb_{a}/min
(ii) Calculate zone supply airflows assuming supply temperatures to be equal to cold deck temperature T_{3} = 55°F plus fan reheat of 1°F:

\dot{m}_{a,A} = max \begin{Bmatrix} (780.7  lb_{a}/min \times 0.6), \\ \left[\frac{143,100  Btu/h}{0.24  Btu/(lb_{a} \cdot °F)  \times  60  min/h  \times (75  –  55)°F}\right] \end{Bmatrix}

= max[468.4,469.9] = 496.9  lb_{a}/min
Note that minimum flow condition has not been reached.
Similarly,

\dot{m}_{a,B} = max \begin{Bmatrix} (358.7  lb_{a}/min \times 0.6), \\ \left[\frac{91,250  Btu/h}{0.24  Btu/(lb_{a} \cdot °F)  \times  60  min/h  \times (75  –  55)°F}\right] \end{Bmatrix}

 

= max[215.2,316.9] = 316.9  lb_{a}/min

i.e., minimum flow condition has not been reached.
Total supply airflow is
\dot{m}_{a,2} = 469.9 + 316.9 = 813.8  lb_{a}/min
or 10,685 ft³ /min (assuming  v_{3} = 13.13  ft^{3}/min)
(iii) Determine zone supply air dry-bulb temperatures:
Since the minimum flow conditions have not been reached, we have
T_{supply,A} = 55°F and T_{supply,B} = 55°F
(iv) Determine fan brake horse power from Equation 16.34 (actually the static pressure will drop a little, but this is neglected):
\dot{W}_{shaft} = \frac{\dot{V}  ft^{3}/min  \times  H  inWG}{6356  \times \eta_{fan}} (hp)            (16.34  IP)

\dot{W}= \frac{10,685  ft^{3}/min  \times  3.00  inWG}{6356  \times 0.6} = 8.41  hp
Note that this does not include fan motor efficiency
(v) Check whether average space humidity levels are acceptable:
\bar{W}_{6} = 0.0077  lb_{w}/lb_{a}  + \frac{(36,000  +  20,000)  Btu/h}{813.8  lb_{a}/min  \times  1075  Btu/lb_{w}  \times  60  min/h}

 

= 0.00877  lb_{w}/lb_{a}

which for a space at 75°F dry-bulb temperature corresponds to RH_{5} = 48% (acceptable).
(vi) Determine mixed-air condition:
Dry-bulb temperature:

T_{1} = \left\lgroup \frac{167.2}{813.8} \right\rgroup \times 77°F + \left\lgroup 1  –  \frac{167.2}{813.8} \right\rgroup \times 75°F = 75.4°F

Humidity ratio:

W_{1} = \left\lgroup \frac{167.2}{813.8} \right\rgroup \times 0.0126  lb_{w}/lb_{a} + \left\lgroup 1  –  \frac{167.2}{813.8} \right\rgroup \times 0.00877  lb_{w}/lb_{a} 

 

= 0.0096  lb_{w}/lb_{a}

(vii) Calculate cooling coil loads:

\dot{Q}_{cc,sen} = 813.8  lb_{a}/min \times 60  min/h \times 0.24  Btu/(lb_{a} \cdot °F) \times (75.4  –  54)°F = 250,893  Btu/h = 20.9  tons

 

\dot{Q}_{cc,lat} = 813.8  lb_{a}/min \times 60  min/h \times 1075 Btu/(lb_{w}) \times (0.0096  –  0.0077)lb_{w}/lb_{a} = 97,337  Btu/h = 8.11  tons

Total cooling coil load Q_{cc,tot} = 348,231  Btu/h or 29.0 tons
(viii) Calculate reheat at terminals for Zones A and B:

\dot{Q}_{hc,A} = 0       and     \dot{Q}_{hc,B} = 0

(b) Single-Duct CAV System (Figure 19.15b)

Consider the same building with two zones as for the single-duct VAV system analyzed earlier.
Compute the cooling and heating loads if the secondary system used to condition the two zones is a single-duct CAV system.
0. Same outdoor airflow rate \dot{m}_{a,0} = 167.2  lb_{a}/min. Also, total supply air mass flow rate \dot{m}_{a} = 1139  lb_{a}/min while the design flow rates to each zone:
\dot{m}_{a,A} = 780.7  lb_{a}/min         and        \dot{m}_{a,B} = 358.7  lb_{a,B} = 358.7  lb_{a}/min

Zone A (Exterior) Zone B (Interior)
Sensible cooling load \dot{Q}_{sen,A} = 143,100  Btu/h \dot{Q}_{sen,B} = 91,260  Btu/h
Latent cooling load \dot{Q}_{lat,A} = 36,000  Btu/h \dot{Q}_{lat,B} = 20,000  Btu/h
Zone temperature Tzone T_{6} = 75°F T_{6} = 75°F
19.15
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. Determine zone supply air dry-bulb temperatures assuming the airflows to individual zones to be equal to those determined under peak conditions (Example 19.8):
The supply temperature of zone A is

T_{db,A} = 75°F  –  \frac{143,100  Btu/h}{780.7  lb_{a}/h  \times  0.24  Btu/(lb_{a} \cdot °F)  \times  60  min/h}

= 62.3°F

and that of zone B is

T_{db,B} = 75°F  –  \frac{91,260  Btu/h}{358.7  lb_{a}/h  \times  0.24  Btu/(lb_{a} \cdot °F)  \times  60  min/h}

= 57.3°F

2. Fan power is 12 hp (same as under peak load since flow is unchanged).
3. Check whether average space humidity levels are acceptable:

\bar{W}_{6} = 0.0077  lb_{w}/lb_{a} + \frac{(36,000  +  20,000)  Btu/h}{1,139.4  lb_{a}/h  \times  1,075  Btu/lb_{w}  \times  60  min/h }

 

= 0.0085  lb_{w}/lb_{a}

which corresponds to RH_{5} = 45% (acceptable)
4. Determine mixed-air condition:
Dry-bulb temperature:

T_{db,1} = \left\lgroup \frac{167.2}{1139.4} \right\rgroup \times 77°F + \left\lgroup 1  –  \frac{167.2}{1139.4} \right\rgroup \times 75°F  = 75.3°F

Humidity ratio:

W_{1} = \left\lgroup \frac{167.2}{1139.4} \right\rgroup \times 0.0126  lb_{w}/lb_{a} + \left\lgroup 1  –  \frac{167.2}{1139.4} \right\rgroup \times 0.0085  lb_{w}/lb_{a} = 0.0091  lb_{w}/lb_{a}

5. Calculate cooling coil loads:

\dot{Q}_{cc,sen} = 1139.4  lb_{a}/min \times 60  min/h \times 0.24  Btu/(lb_{a} \cdot   °F) \times (75.3  –  54)°F = 349,477  Btu/h = 29.12  tons

 

\dot{Q}_{cc,lat} = 1,139.4  lb_{a}/min \times 60  min/h \times 1,075  Btu/lb_{w} \times (0.0091  –  0.0077)lb_{w}/lb_{a} = 102,888  Btu/h 

= 8.57  tons

Total cooling coil load Q_{cc,tot} = 37.7  tons.
6. Calculate reheat at terminals for zones A and B:

\dot{Q}_{hc,A} = 780.7  lb_{a}/min \times 60  min/h \times 0.24  Btu/(lb_{a} \cdot °F) \times (62.3  –  55)°F = 82,067  Btu/h

 

\dot{Q}_{hc,B} = 358.7  lb_{a}/min \times 60  min/h \times 0.24  Btu/(lb_{a} \cdot °F) \times (57.3  –  55)°F = 11,880  Btu/h

Total load on reheat coils:

\dot{Q}_{hc,tot} = \dot{Q}_{hc,A} + \dot{Q}_{hc,B} = 11,880  Btu/h

(c) Dual-Duct CAV System (Figure 19.16b)
Consider the same building with two zones as for the single-duct CAV system analyzed earlier.
Compute the cooling and heating loads if the secondary system used to condition the two zones is a dual-duct CAV system with the cold deck set at the same cooling coil conditions as previously.
Because of the location of the fan, the fan heats up the mixed airstream (T_{2} = 75.3°F + 1°F = 76.3°F), while, in order to be consistent, the cold deck is set at T_{db,3} = 55°F. The hot deck temperature is taken to be T_{db,4} = 105°F to be consistent with the peak design procedure described in Example 19.8.
Steps 1–5 are identical to the single-duct CAV system case.
6. Compute the airflow rates using Equation 19.18:

\dot{m}_{a,cc,A} = \dot{m}_{a,A} \frac{(T_{db,4}  –  T_{db,5A})}{(T_{db,4}  –  T_{db,3})}         and      \dot{m}_{a,hc,A} = \dot{m}_{a,A}  –  \dot{m}_{a,cc,A}

and

\dot{m}_{a,cc,B} = \dot{m}_{a,B} \frac{(T_{db,4}  –  T_{db,5B})}{(T_{db,4}  –  T_{db,3})}         and      \dot{m}_{a,hc,B} = \dot{m}_{a,B}  –  \dot{m}_{a,cc,B}                (19.18)

\dot{m}_{a,cc,A} = 780.7  lb_{a}/min \times  \frac{(105  –  62.3)°F}{(105  –  55)°F} = 667.7  lb_{a}/min

and      \dot{m}_{a,hc,A} = 780.7  –  6666.7 = 1140.0  lb_{a}/min

 

\dot{m}_{a,cc,B} = 358.7  lb_{a}/min \times  \frac{(105  –  57.3)°F}{(105  –  55)°F} = 342.2  lb_{a}/min

and      \dot{m}_{a,hc,B} = 358.7  –  342.2 = 16.5  lb_{a}/min

7. Determine the airflow over the cooling and heating coils:

\dot{m}_{a,cc} = 666.7 + 342.2 = 1008.9  lb_{a}/min

and    \dot{m}_{a,hc} = 130.5  lb_{a}/min

8. Calculate cooling coil load:

\dot{Q}_{cc,sen} = 1,008.9  lb_{a}/min \times 60  min/h \times 0.24  Btu/(lb_{a} \cdot °F) \times (76.3  –  55)°F = 322,343  Btu/h = 26.86  tons

\dot{Q}_{cc,lat} = 1,008.9  lb_{a}/min \times 60  min/h \times 1,075  Btu/lb_{w} \times (0.0091  –  0.0077)  lb_{w}/lb_{a} = 91,104  Btu/h

= 7.6  tons

Total cooling coil load Q_{cc,tot} = 34.46  tons.
9. Calculate heating coil load:

\dot{Q}_{hc} = 130.5  lb_{a}/min \times 60  min/h \times 0.24  Btu/(lb_{a} \cdot °F) \times (105  –  76.3)°F = 53,726  Btu/h

Comments
The secondary system is meant to meet the zone loads plus the energy needed to condition the ventilation outdoor air to the space condition.

We will assume that the ideal indoor space condition is 75°F and 50% RH (at which condition, the humidity ratio is 0.0093  lb_{w}/lb_{a}). Hence, the “ideal” load is given by

\dot{Q}_{cc,ideal} = (Sensible + latent  loads) for Zone A and B + (Sensible + latent loads) for ventilation air

= (143,100 + 91,260 + 36,000 + 20,000) Btu/h + 167.2 kg/min × 60 min/h
× [0.24  Btu/(lb_{a} \cdot °F) \times (77  –  75) °F + 1,075  Btu/lb_{w} × (0.0126  –  0.0093) lb_{w}/lb_{a}]
= 330,763 Btu/h = 27.6 tons
The following table assembles the summary results of all three all-air systems under the partload operation specified in Example 19.9.

We note that the VAV system outperforms the other two systems and is very close to the ideal loads. It is the best choice since it requires the least cooling energy, no heating energy, and lower fan electricity use. If we dene efficiency in terms of the ideal loads, then for the VAV system, it is (27.6/29) = 95%, while that for the single-duct CAV = (27.6 tons × 12,000 Btu/h · ton)/(37.7 tons × 12,000 Btu/h · ton + 93,947 Btu/h) = 0.61. The two CAV systems are similar thermodynamically, and the differences in energy use determined are partly due to the manner in which we selected the hot deck temperature, due to the way we adjusted for the supply fan being  upstream, and also due to slightly different resulting humidity levels in the space that affect the latent loads. The single-duct CAV dehumidies the entire airstream, while, in the dual-duct system, it is only the portion of the airstream flowing over the cooling coil that is dehumidied. This has an impact on humidity levels inside the two zones.

Ideal
Loads
SingleDuct CAV SingleDuct VAV Dual-Duct CAV
Cooling
(tons)
27.6 37.7 29.0 34.5
Heating
(Btu/h)
93,947 0 53,726
Fan power
(hp)
12.0 7.41 12.0
Thermal
efficiency
0.61 0.95 0.71
19.16

Related Answered Questions