Question 13.6: Find (a) ∫ sin 2t cos t dt (b) ∫ sin mt sin nt dt, where m a......

Find

(a)  \int \sin 2 t \cos t \mathrm{~d} t

(b)  \int \sin m t \sin n t \mathrm{~d} t,  where m and n are constants with m ≠ n

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Using the identities in Table 3.1 we find

2 \sin A \cos B=\sin (A+B)+\sin (A-B)

hence  \sin 2 t \cos t  can be written  \frac{1}{2}(\sin 3 t+\sin t).  Therefore,

\begin{aligned}\int \sin 2 t \cos t \mathrm{~d} t & =\int \frac{1}{2}(\sin 3 t+\sin t) \mathrm{d} t \\& =\frac{1}{2}\left(\frac{-\cos 3 t}{3}-\cos t\right)+c \\& =-\frac{1}{6} \cos 3 t-\frac{1}{2} \cos t+c\end{aligned}

(b) Using the identity  2 \sin A \sin B=\cos (A-B)-\cos (A+B),  we find

\sin m t \sin n t=\frac{1}{2}\{\cos (m-n) t-\cos (m+n) t\}

Therefore,

\begin{aligned}\int \sin m t \sin n t \mathrm{~d} t & =\int \frac{1}{2}\{\cos (m-n) t-\cos (m+n) t\} \mathrm{d} t \\& =\frac{1}{2}\left\{\frac{\sin (m-n) t}{m-n}-\frac{\sin (m+n) t}{m+n}\right\}+c\end{aligned}
Table 3.1
Common trigonometric identities.
\begin{aligned}& \tan A=\frac{\sin A}{\cos A} \\& \sin (A \pm B)=\sin A \cos B \pm \sin B \cos A \\& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\& 2 \sin A \sin B=\cos (A-B)-\cos (A+B) \\& \sin ^2 A+\cos ^2 A=1 \\& 1+\cot ^2 A=\operatorname{cosec^ 2} A \\& \tan ^2 A+1=\sec ^2 A \\& \cos 2 A=1-2 \sin ^2 A=2 \cos ^2 A-1=\cos ^2 A-\sin ^2 A \\& \sin 2 A=2 \sin  A \cos  A \\& \sin ^2 A=\frac{1-\cos 2 A}{2} \\& \cos ^2 A=\frac{1+\cos 2 A}{2}\end{aligned}
Note: \sin ^2 A  is the notation used for (\sin A)^2.  Similarly  \cos ^2 A  means (\cos A)^2.

Related Answered Questions

Question: 13.11

Verified Answer:

Figure 13.13 illustrates the required area. From t...
Question: 13.9

Verified Answer:

Figure 13.11 illustrates the required area. [latex...
Question: 13.8

Verified Answer:

\begin{aligned}\text { Area } & =\int_1...
Question: 13.7

Verified Answer:

(a) Let I stand for  \int_1^2 x^2+1 d x[/la...
Question: 13.5

Verified Answer:

Powers of trigonometric functions, for example  [l...
Question: 13.2

Verified Answer:

From Table 10.1 we find \frac{\mathrm{d}}{\...
Question: 13.1

Verified Answer:

We need to find a function which, when differentia...