Evaluate
(a) \int_1^2 x^2+1 d x (b) \int_2^1 x^2+1 d x (c) \int_0^\pi \sin x d x
(a) Let I stand for \int_1^2 x^2+1 d x.
I=\int_1^2 x^2+1 \mathrm{~d} x=\left[\frac{x^3}{3}+x\right]_1^2
The integral is now evaluated at the upper and lower limits. The difference gives the value required.
I=\left(\frac{2^3}{3}+2\right)-\left(\frac{1^3}{3}+1\right)=\frac{8}{3}+2-\frac{4}{3}=\frac{10}{3}
(b) Because interchanging the limits of integration changes the sign of the integral, we find
\int_2^1 x^2+1 \mathrm{~d} x=-\int_1^2 x^2+1 \mathrm{~d} x=-\frac{10}{3}
(c) \int_0^\pi \sin x d x=[-\cos x]_0^\pi=(-\cos \pi)-(-\cos 0)=1-(-1)=2
Figure 13.10 illustrates this area.