Question 6.SQ.3: Two large reservoirs with a difference in water level of 27 ......

Two large reservoirs with a difference in water level of 27 m are connected by a pipeline that splits into two branches (as in Fig. 6.7) after a distance of 10 km. Ignoring minor losses, calculate the discharge in each of the three pipelines if the details of the pipelines are:

 pipeline  Diameter (m)  Length (km) λ10.90100.0420.75210.0730.60230.05\begin{array}{cccc}\text { pipeline } & \text { Diameter (m) } & \text { Length (km) } & \lambda \\1 & 0.90 & 10 & 0.04 \\2 & 0.75 & 21 & 0.07 \\3 & 0.60 & 23 & 0.05\end{array}
Figure 6.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Applying the Bernoulli equation to a streamline joining the surface of the reservoirs via pipes 1 and 2, ignoring minor losses: Z=λ1L1V12/2gD1+λ2L2V22/2gD2Z = {\lambda _{1}L_{1}V_{1}^{2}}/{2gD_{1}} + {\lambda _{2}L_{2}V_{2}^{2}}/{2gD_{2}} where Z = 27 m. Thus:

27=[0.04×10000×V12/19.62×0.9]+[0.07×21000×V22/19.62×0.75]27 = \left[0.04 \times 10000 \times {V_{1}^{2}}/{19.62} \times 0.9\right] + \left[0.07 \times 21000 \times {V_{2}^{2}}/{19.62} \times 0.75\right]

27=22.653V12+99.898V2227 = 22.653V_{1}^{2} + 99.898V_{2}^{2}  (1)

Applying the Bernoulli equation to a streamline joining the surface of the reservoirs via pipes 1 and 3, ignoring minor losses: Z=λ1L1V12/2gD1+λ3L3V32/2gD3Z = {\lambda _{1}L_{1}V_{1}^{2}}/{2gD_{1}} + {\lambda _{3}L_{3}V_{3}^{2}}/{2gD_{3}} where Z = 27 m again. Thus:

27=22.653V12+[0.05×23000×V32/19.62×0.60]27 = 22.653V_{1}^{2} + \left[0.05 \times 23000 \times {V_{3}^{2}}/{19.62} \times 0.60\right] so:

27=22.653V12+97.689V3227 = 22.653V_{1}^{2} + 97.689V_{3}^{2}  (2)

Subtracting equation (2) from equation (1) gives: 0=99.898V22+97.689V320 = 99.898V_{2}^{2} + 97.689V_{3}^{2}.

Thus V32=(99.898/97.689)V22 givingV3=1.011V2V_{3}^{2} = ({99.898}/{97.689})V_{2}^{2}  giving V_{3} = 1.011V_{2}  (3)

Applying the continuity equation: Q1=Q2+Q3 or D12V1=D22V2+D32V3Q_{1} = Q_{2} + Q_{3}  or  D_{1}^{2}V_{1} = D_{2}^{2}V_{2} + D_{3}^{2}V_{3}.

Thus 0.92V1=0.752V2+0.62V30.9^{2}V_{1} = 0.75^{2}V_{2} + 0.6^{2}V_{3} giving 0.81V1=0.563V2+0.36V30.81V_{1} = 0.563V_{2} + 0.36V_{3}. Now substituting for V3V_{3} from equation (3): 0.81V1=0.563V2+0.36(1.011V2)0.81V_{1} = 0.563V_{2} + 0.36(1.011V_{2}) thus 0.81V1=0.927V2 or V1=1.144V20.81V_{1} = 0.927V_{2}  or  V_{1} = 1.144V_{2}  (4)

Substituting for V1 in equation (1): 27=22.653(1.144V2)2+99.898V2227 = 22.653(1.144V_{2})^{2} + 99.898V_{2}^{2}

27=129.545V22 thus V2=0.45727 = 129.545V_{2}^{2}  thus  V_{2} = 0.457 m/s.

Substituting for V2V_{2} in equation (4) gives V1V_{1} = 0.523 m/s.

Substituting for V2V_{2} in equation (3) gives V3V_{3} = 0.462 m/s.

Thus Q1=(π×0.92/4)×0.523=0.333 m3/s. Q2=(π×0.752/4)×0.457=0.202 m3/sQ_{1} = (\pi \times {0.9^{2}}/{4}) \times 0.523 = 0.333  {m^{3}}/{s}.  Q_{2} = (\pi \times {0.75^{2}}/{4}) \times 0.457 = 0.202  {m^{3}}/{s}.

Q1=(π×0.62/4)×0.462=0.131 m3/sQ_{1} = (\pi \times {0.6^{2}}/{4}) \times 0.462 = 0.131  {m^{3}}/{s}.

Related Answered Questions

Question: 6.13

Verified Answer:

V = ({0.397}/{n}) D^{{2}/{3}} S_{F}^{{1}/{2...