Question 7.132: A chain is suspended between points at the same elevation an...
A chain is suspended between points at the same elevation and spaced a distance of 60 ft apart. If it has a weight per unit length of 0.5 lb/ft and the sag is 3 ft, determine the maximum tension in the chain.
Learn more on how we answer questions.
x=\int \frac{d s}{\left\{1+\frac{1}{F_H^2} \int\left(w_0 d s\right)^2\right\}^{\frac{1}{2}}}
Performing the integration yields:
x=\frac{F_H}{0.5}\left\{\operatorname{sin~}^{-1}\left[\frac{1}{F_H}\left(0.5 s+C_1\right)\right]+C_2\right\} (1)
From Eq. 7-14
\frac{d y}{d x}=\frac{1}{F_H} \int w_0 d s
\frac{d y}{d x}=\frac{1}{F_H}\left(0.5 s+C_1\right)
\text { At } s=0 ; \quad \frac{d y}{d x}=0 \quad \text { hence } C_1=0\frac{d y}{d x}=\tan \theta=\frac{0.5 s}{F_H} (2)
Applying boundary conditions at x = 0; s = 0 to Eq. (1) and using the result C_1=0 yields C_2=0 . Hence
s=\frac{F_H}{0.5} \sinh \left(\frac{0.5}{F_H} x\right) (3)
Substituting Eq. (3) into (2) yields:
\frac{d y}{d x}=\sinh \left(\frac{0.5 x}{F_H}\right) (4)
Performing the integration
y=\frac{F_H}{0.5} \cosh \left(\frac{0.5}{F_H} x\right)+C_3 (5)
Applying boundary conditions at x=0 ; y=0 \text { yields } C_3=-\frac{F_H}{0.5} \text {. } Therefore y=\frac{F_H}{0.5}\left[\cosh \left(\frac{0.5}{F_H} x\right)-1\right]
\text { At } x=30 \mathrm{ft} ; \quad y=3 \mathrm{ft} ; \quad 3=\frac{F_H}{0.5}\left[\cosh \left(\frac{0.5}{F_H}(30)\right)-1\right]By trial and error F_H=75.25 \mathrm{lb}
\text { At } x=30 \mathrm{ft} ; \quad \theta=\theta_{\max }. From Eq. (4)
\tan \theta_{\max }=\left.\frac{d y}{d x}\right|_{x=30 \mathrm{ft}}=\sinh \left(\frac{0.5(30)}{75.25}\right) \quad \theta_{\max }=11.346^{\circ}
T_{\max }=\frac{F_H}{\cos \theta_{\max }}=\frac{75.25}{\cos 11.346^{\circ}}=76.7 \mathrm{lb}
