Question 7.136: If the 45-m-long cable has a mass per unit length of 5 kg/m,...
If the 45-m-long cable has a mass per unit length of 5 kg/m, determine the equation of the catenary curve of the cable and the maximum tension developed in the cable.

Learn more on how we answer questions.
As shown in Fig. a, the orgin of the x, y coordinate system is set at the lowest point of the cable. Here, w(s)=5(9.81) \mathrm{N} / \mathrm{m}=49.05 \mathrm{~N} / \mathrm{m}
\frac{d^2 y}{d x^2}=\frac{49.05}{F_H} \sqrt{1+\left(\frac{d y}{d x}\right)^2}
\text { Set } u=\frac{d y}{d x} \text {, then } \frac{d u}{d x}=\frac{d^2 y}{d x^2} \text {, then }\frac{d u}{\sqrt{1+u^2}}=\frac{49.05}{F_H} d x
Integrating,
\ln \left(u+\sqrt{1+u^2}\right)=\frac{49.05}{F_H} x+C_1
Applying the boundary condition u=\frac{d y}{d x}=0 \text { at } x=0 \text { results in } C_1=0 . Thus,
\ln \left(u+\sqrt{1+u^2}\right)=\frac{49.05}{F_H} x
u+\sqrt{1+u^2}=e^{\frac{49.05}{F_H} x}
\frac{d y}{d x}=u=\frac{e^{\frac{49.05}{F_H} x}-e^{-\frac{49.05}{F_H} x}}{2}
Since sinh x=\frac{e^x-e^{-x}}{2}, then
\frac{d y}{d x}=\sinh \frac{49.05}{F_H} x
Integrating,
y=\frac{F_H}{49.05} \cosh \left(\frac{49.05}{F_H} x\right)+C_2
Applying the boundary equation y = 0 at x = 0 results in C_2=-\frac{F_H}{49.05} . Thus,
y=\frac{F_H}{49.05}\left[\cosh \left(\frac{49.05}{F_H} x\right)-1\right] \mathrm{m}
If we write the force equation of equilibrium along the x and y axes by referring to the free-body diagram shown in Fig. b,
\overset{+}{\longrightarrow } \Sigma F_x=0 ; \quad T \cos \theta-F_H=0
+↑\Sigma F_y=0 ; \quad T \sin \theta-5(9.81) s=0
Eliminating T,
\frac{d y}{d x}=\tan \theta=\frac{49.05 s}{F_H}
Equating Eqs. (1) and (3) yields
\frac{49.05 s}{F_H}=\sinh \left(\frac{49.05}{F_H} x\right)
s=\frac{F_H}{49.05}=\sinh \left(\frac{49.05}{F_H}\right)
Thus, the length of the cable is
L=45=2\left\{\frac{F_H}{49.05} \sinh \left(\frac{49.05}{F_H}(20)\right)\right\}
Solving by trial and error,
F_H=1153.41 \mathrm{~N}
Substituting this result into Eq. (2),
y=23.5[\cosh 0.0425 x-1] \mathrm{m}
The maximum tension occurs at either points A or B where the cable makes the greatest angle with the horizontal. Here
\theta_{\max }=\tan ^{-1}\left(\left.\frac{d y}{d x}\right|_{\mathrm{x}=20 \mathrm{~m}}\right)=\tan ^{-1}\left\{\sinh \left(\frac{49.05}{F_H}(20)\right)\right\}=43.74^{\circ}
Thus,
T_{\max }=\frac{F_H}{\cos \theta_{\max }}=\frac{1153.41}{\cos 43.74^{\circ}}=1596.36 \mathrm{~N}=1.60 \mathrm{kN}