Question 5.19: Referring to the coaxial cable as shown in Fig. 5.32, determ......

Referring to the coaxial cable as shown in Fig. 5.32, determine the inductance per unit length of the cable from the magnetic energy stored in the cable.

5.32
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

In the region < ρ < b, inserting Eq. (5-106b) into Eq. (5-126), the magnetic energy is

\pmb{B}=\frac{\mu _{o}I}{2 \pi \rho }\pmb{a}_{\phi }                                       (< ρ < b)                                                       (5-106b)

\boxed{W_{m}=\frac{\mu}{2}\int_{\nu}H^{2}dv=\frac{1}{2\mu}\int_{\nu}B^{2}d v}                                            [J]                                   (5-126)

W_{m1} = \frac{1}{2\mu _{o} }\int_{\rho =a}^{\rho =b}\int_{\phi =0}^{\phi =2\pi }{ \left[ \frac{\mu _{o} I}{2\pi \rho } \right]^{2}\rho d\rho d\phi } = \frac{\mu _{o} I^{2}}{4\pi } \ln \frac{b}{a}                                   (5-128a)

In the region 0 ≤ ρ ≤ a , inserting Eq. (5-106c) into Eq. (5-126), the magnetic energy is

\pmb{B}=\frac{\mu _{o}\rho I}{2 \pi a^{2} }\pmb{a}_{\phi }                                       (0 ≤ ρ ≤ a)                                                       (5-106c)

W_{m2} = \frac{1}{2\mu _{o} }\int_{\rho =0}^{\rho =a}\int_{\phi =0}^{\phi =2\pi }{ \left[ \frac{\mu _{o}\rho I}{2\pi a^{2} } \right]^{2}\rho d\rho d\phi } = \frac{\mu _{o} I^{2}}{16\pi }                                                  (5-128b)

The inductance per unit length of the cable is obtained by inserting Eq. (5- 128) into Eq. (5-127):

\boxed{L = \frac{2W_{m}}{I^{2}}}                                   [J]                              (5-127)

L =\frac{2}{I^{2}} (W_{m1} + W_{m2}) = \frac{\mu _{o}}{2\pi }\ln \frac{b}{a} +\frac{\mu _{o}}{8\pi }                            [H/m]                                  (5-129)

We have the same result as Eq. (5-110).

L = \frac{\Lambda_{1} +\Lambda_{2}}{I} =\frac{\mu _{o}}{2\pi}\ln \frac{b}{a} + \frac{\mu _{o}}{8\pi }\\ \quad \quad \quad \quad \quad \equiv L_{ex}+L_{in}                                  [H/m]                                  (5-110)

Related Answered Questions