Referring to the coaxial cable as shown in Fig. 5.32, determine the inductance per unit length of the cable from the magnetic energy stored in the cable.
In the region a < ρ < b, inserting Eq. (5-106b) into Eq. (5-126), the magnetic energy is
\pmb{B}=\frac{\mu _{o}I}{2 \pi \rho }\pmb{a}_{\phi } (a < ρ < b) (5-106b)
\boxed{W_{m}=\frac{\mu}{2}\int_{\nu}H^{2}dv=\frac{1}{2\mu}\int_{\nu}B^{2}d v} [J] (5-126)
W_{m1} = \frac{1}{2\mu _{o} }\int_{\rho =a}^{\rho =b}\int_{\phi =0}^{\phi =2\pi }{ \left[ \frac{\mu _{o} I}{2\pi \rho } \right]^{2}\rho d\rho d\phi } = \frac{\mu _{o} I^{2}}{4\pi } \ln \frac{b}{a} (5-128a)
In the region 0 ≤ ρ ≤ a , inserting Eq. (5-106c) into Eq. (5-126), the magnetic energy is
\pmb{B}=\frac{\mu _{o}\rho I}{2 \pi a^{2} }\pmb{a}_{\phi } (0 ≤ ρ ≤ a) (5-106c)
W_{m2} = \frac{1}{2\mu _{o} }\int_{\rho =0}^{\rho =a}\int_{\phi =0}^{\phi =2\pi }{ \left[ \frac{\mu _{o}\rho I}{2\pi a^{2} } \right]^{2}\rho d\rho d\phi } = \frac{\mu _{o} I^{2}}{16\pi } (5-128b)
The inductance per unit length of the cable is obtained by inserting Eq. (5- 128) into Eq. (5-127):
\boxed{L = \frac{2W_{m}}{I^{2}}} [J] (5-127)
L =\frac{2}{I^{2}} (W_{m1} + W_{m2}) = \frac{\mu _{o}}{2\pi }\ln \frac{b}{a} +\frac{\mu _{o}}{8\pi } [H/m] (5-129)
We have the same result as Eq. (5-110).
L = \frac{\Lambda_{1} +\Lambda_{2}}{I} =\frac{\mu _{o}}{2\pi}\ln \frac{b}{a} + \frac{\mu _{o}}{8\pi }\\ \quad \quad \quad \quad \quad \equiv L_{ex}+L_{in} [H/m] (5-110)