Question 5.4: Using the z-table to Find Normal Probabilities Refer to the ......

Using the z-table to Find Normal Probabilities

Refer to the z-table (Table 1 in Appendix 1).
Determine:
(a)  P(0 < z < 1.46)
(b)  P(−2.3 < z < 0)
(c)  P(z > 1.82)
(d)  P(−2.1 < z < 1.32)
(e)  P(1.24 < z <2.075)

TABLE 1 The standard normal distribution (z) This table gives the area under the standard normal curve between 0 and z P[0 < Z < z] In Excel (2016): use NORM.S.DIST(z, cumulative = True) to find P(– ∞ < Z < z)
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2703 0.2734 0.2764 0.2793 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3557 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158
2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361
2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520
2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643
2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736
2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807
2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861
3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49897 0.49900
3.1 0.49903 0.49906 0.49910 0.49913 0.49916 0.49918 0.49921 0.49924 0.49926 0.49929
3.2 0.49931 0.49934 0.49936 0.49938 0.49940 0.49942 0.49944 0.49946 0.49948 0.49950
3.3 0.49952 0.49953 0.49955 0.49957 0.49958 0.49960 0.49961 0.49962 0.49964 0.49965
3.4 0.49966 0.49968 0.49969 0.49970 0.49971 0.49972 0.49973 0.49974 0.49975 0.49976
3.5 0.49977 0.49978 0.49978 0.49979 0.49980 0.49981 0.49981 0.49982 0.49983 0.49983
3.6 0.49984 0.49985 0.49985 0.49986 0.49986 0.49987 0.49987 0.49988 0.49988 0.49989
3.7 0.49989 0.49990 0.49990 0.49990 0.49991 0.49991 0.49991 0.49992 0.49992 0.49992
3.8 0.49993 0.49993 0.49993 0.49994 0.49994 0.49994 0.49994 0.49995 0.49995 0.49995
3.9 0.49995 0.49995 0.49996 0.49996 0.49996 0.49996 0.49996 0.49996 0.49997 0.49997
4.0 0.49997 0.49997 0.49997 0.49997 0.49997 0.49997 0.49998 0.49998 0.49998 0.49998
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Refer to Figure 5.3, which shows the required area.

From the z-table, identify z = 1.4 down the left column of z. Then read across the columns at the z = 1.4 row until z = 0.06. The area found at this intersection is 0.4279. So P(0 < z < 1.46) = 0.4279

Thus there is a 42.79% chance that a z-value will lie between z = 0 and z = 1.46.

(b) Refer to Figure 5.4, which shows the required area.

Because of symmetry, this area (probability) is equivalent to finding the area P(0 < z < 2.3) on the positive z side. Reading from the z-table (left column), at z = 2.3, this area equals 0.48928.

So P(−2.3 < z < 0) = 0.48928

Thus there is a 48.93% chance that a z-value will lie between z = −2.3 and z = 0.

(c) Refer to Figure 5.5, which shows the required area.

The z-table only gives areas between the midpoint (z = 0) and an upper z-limit, k (i.e. between 0 < z < k). The area above k is found by subtracting the area between (0 < z < k) from 0.5, which is the total area above the midpoint of z = 0.

From the z-table, P(0 < z < 1.82) = 0.4656.

Then P(z > 1.82) = 0.5000 – 0.4656 (Complementary probability rule.) = 0.0344

Thus there is only a 3.44% chance that a z-value will lie above z = 1.82.

(d) Refer to Figure 5.6, which shows the required area.

P(−2.1 < z < 1.32) is equal to the sum of two mutually exclusive areas, each of which can be looked up separately in the z-table.

Thus P(−2.1 < z < 1.32) = P(−2.1 < z < 0) + P(0 < z < 1.32)

From the z-table         P(−2.1 < z < 0) = 0.4821 (Using symmetry.)

and         P(0 < z < 1.32) = 0.4066

Then P(−2.1 < z < 1.32) = 0.4821 + 0.4066 = 0.8887

Thus there is an 88.87% chance that a z-value will lie between z = −2.1 and z = 1.32.

(e) Refer to Figure 5.7, which shows the required area.

Again, split the required area into two parts, P(0 < z < 1.24) and P(0 < z < 2.075).

The difference between these two areas isolates the required probability.

From the z-table P(0 < z < 2.075) = 0.4812      (Note: 2.075 is rounded to 2.08.)

P(0 < z < 1.24) = 0.3925

Then P(1.24 < z < 2.075) = 0.4812 – 0.3925 = 0.0887

Thus there is only an 8.87% chance that a z-value lies between z = 1.24 and z = 2.075.

f 5.3
f 5.4
f 5.5
f 5.6
f 5.7

Related Answered Questions