Question 6.4: Steady-State Model of Synchronous Generator Derive a steady-......

Steady-State Model of Synchronous Generator
Derive a steady-state model of a synchronous generator and its phasor diagram.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

In the steady state, all the currents and flux linkages are constant. Also, i_{0} = 0 and rotor damper currents are zero. Equations 6.89 through 6.94 reduce to
v_{d }= -ri_{d} – \frac{dθ}{dt}λ_{q} – \frac{dλ_{d}}{dt}      (6.89)
v_{F} = r_{F}i_{F} + \frac{dλ_{F}}{dt}     (6.90)
v_{D} = r_{D}i_{D} +\frac{dλ_{D}}{dt} = 0     (6.91)
v_{q}= -ri_{q} + \frac{d\theta }{dt}\lambda _{d} – \frac{d\lambda _{q}}{dt}     (6.92)
v_{Q} = r_{Q}i_{Q} + \frac{dλ_{Q}}{dt} = 0   (6.93)
λ_{0}= L_{0}i_{0}      (6.94)

v_{d}=- ri_{d}-ω_{0}λ_{q}
v_{q}=- ri_{q}+ω_{0}λ_{d}               (6.103)
v_{F}= r_{F}i_{F}
where
λ_{d}= L_{d}i_{d}+kM_{F}i_{F}
λ_{F}= kM_{F}i_{d}+L_{F}i_{F}               (6.104)
λ_{q}+L_{q}i_{q}
Substitute values of λ_{d} and λ_{q} from Equation 6.104 to 6.103; then, from Example 6.3, and then from Equations 6.100 to 6.101,
V_{a}= (\frac{v_{q}}{\sqrt{3}}+ j \frac{v_{d}}{\sqrt{3}}) e^{jδ}= (V_{q} + jV_{d}) e^{jδ}       (6.100)
V_{q}= \frac{v_{q}}{\sqrt{3}}   and V_{d}= \frac{v_{d}}{\sqrt{3}}           (6.101)
we can write the following equation:
V_{a} = -r(I_{q} + jI_{d})e^{ jδ} + ω_{0}L_{d}I_{d}e^{ jδ} – jω_{0}L_{q}I_{q}e^{ jδ} +\frac{ 1}{\sqrt{2}}ω_{0}M_{F}i_{F}e^{ jδ}    where   i_{d} =\sqrt{3} I_{d}   and   i_{q} =\sqrt{3} I_{q}.
Define
\sqrt{2} E =ω_{0}M_{F}i_{F}e^{ jδ}       (6.105)
This is the no-load voltage or the open-circuit voltage with generator current = 0. We can then
write
E = V_{a} + rI_{a} + jX_{d}I_{d}e^{ jδ} + jX_{q}I_{q}e^{ jδ}      (6.106)
The phasor diagram is shown in Figure 6.12a. The open circuit voltage on no load is a q-axis quantity and is equal to the terminal voltage.
As the components I_{d} and I_{q} are not initially known, the phasor diagram is constructed by first laying out the terminal voltage V_{a} and line current I_{a} at the correct phase angle \phi, then adding the resistance drop and reactance drop IX_{q}. At the end of this vector, the quadrature axis is located. Now the current is resolved into direct axis and quadrature axis components. This allows the construction of vectors I_{q}X_{q} and I_{q}X_{q}. This is shown in Figure 6.12b.

6.12

Related Answered Questions

Question: 6.8

Verified Answer:

Applying the equations in Section 6.9.1: L_...