Testing the Correlation Coefficient
Refer to the management scenario of Example 12.1. At the 5% level of significance, test whether the population correlation coefficient, ρ, between the number of advertisements placed and weekly flat-screen TV sales is actually zero.
The same five steps of hypothesis testing are used. The test statistic is t-stat.
Step 1: Define the null and alternative hypotheses
H_0: ρ = 0 (newspaper advertisements and TV sales are not related)
H_1: ρ ≠ 0 (newspaper advertisements and TV sales are related)
This is a two-tailed hypothesis test that shows no relationship in the null hypothesis.
Note: The closer r is to zero, the more likely it is that the null hypothesis will be accepted.
Step 2: Determine the region of acceptance of the null hypothesis
The test is based on the t statistic (as used in chapters 7 and 8). To read off the critical t-limits for the region of acceptance, both a level of significance and degrees of freedom for the test are required.
Given α = 0.05. For a simple regression equation:
Degrees of freedom (df) = n − 2 12.10
In this example, df = 12 − 2 = 10. Then t-crit = ±2.228 (Table 2, Appendix 1). Thus the region of acceptance for H_0 is −2.228 ≤ t ≤ +2.228.
The decision rule is then stated as follows:
Step 3: Calculate the sample test statistic (t-stat)
The sample test statistic is t-stat, which is calculated using the following formula:
t-stat = r\sqrt{\frac{(n-2)}{1-r^2} } 12.11
In the example, r = 0. 8198 and n = 12. Then:
t-stat = 0.8198\sqrt{\frac{(12-2) }{(1-0.8198^2)}} = 0.8198 × \sqrt{\frac{10}{0.3279} } = 4.527
The p-value can be found using T.DIST.2T(t-stat,df = n – 2)
i.e. p-value = T.DIST.2T(4.527,10) = 0.0011
Step 4: Compare the sample test statistic to the region of acceptance
The sample test statistic, t-stat = 4.527 lies outside (well above) the region of acceptance of H_0, as shown in Figure 12.19.
Step 5: Draw statistical and management conclusions
Since t-stat > + t-crit (and p-value << α), we reject H_0 at the 5% level of significance. There is strong enough sample evidence to conclude that the population correlation coefficient is not zero. The alternative hypothesis is probably true.
From a management viewpoint, the sample evidence indicates that there is a genuine strong positive statistical relationship between the number of advertisements placed (x) and the weekly flat-screen TV sales (y) in the population.
TABLE 2 The t distribution This table gives the value of t_{(\alpha,n)} with n degrees of freedom = P[t\geq t_{(\alpha,n)}] In Excel (2016) use: T.INV(α, df) for a one-sided lower limit T.INV(1 – α, df) for a one-sided upper limit T.INV.2T(α, df) for two-sided limits where α = combined tail areas |
![]() |
|||||
α | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.0025 |
df | ||||||
1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 127.322 |
2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 14.089 |
3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 7.453 |
4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 5.598 |
5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 4.773 |
6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 4.317 |
7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.029 |
8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 3.833 |
9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 3.690 |
10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 3.581 |
11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 3.497 |
12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.428 |
13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.372 |
14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.326 |
15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.286 |
16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.252 |
17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.222 |
18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.197 |
19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.174 |
20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.153 |
21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.135 |
22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.119 |
23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.104 |
24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.091 |
25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.078 |
26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.067 |
27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.057 |
28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.047 |
29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.038 |
30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.030 |
31 | 1.309 | 1.696 | 2.040 | 2.453 | 2.744 | 3.022 |
32 | 1.309 | 1.694 | 2.037 | 2.449 | 2.738 | 3.015 |
33 | 1.308 | 1.692 | 2.035 | 2.445 | 2.733 | 3.008 |
34 | 1.307 | 1.691 | 2.032 | 2.441 | 2.728 | 3.002 |
35 | 1.306 | 1.690 | 2.030 | 2.438 | 2.724 | 2.996 |
36 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 | 2.990 |
37 | 1.305 | 1.687 | 2.026 | 2.431 | 2.715 | 2.985 |
38 | 1.304 | 1.686 | 2.024 | 2.429 | 2.712 | 2.980 |
39 | 1.304 | 1.685 | 2.023 | 2.426 | 2.708 | 2.976 |
40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 2.971 |
45 | 1.301 | 1.679 | 2.014 | 2.412 | 2.690 | 2.952 |
50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 2.937 |
60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 2.915 |
70 | 1.294 | 1.667 | 1.994 | 2.381 | 2.648 | 2.899 |
80 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 2.887 |
90 | 1.291 | 1.662 | 1.987 | 2.369 | 2.632 | 2.878 |
100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 2.871 |
120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 2.860 |
140 | 1.288 | 1.656 | 1.977 | 2.353 | 2.611 | 2.852 |
160 | 1.287 | 1.654 | 1.975 | 2.350 | 2.607 | 2.847 |
180 | 1.286 | 1.653 | 1.973 | 2.347 | 2.603 | 2.842 |
200 | 1.286 | 1.653 | 1.972 | 2.345 | 2.601 | 2.839 |
∞ | 1.282 | 1.645 | 1.960 | 2.327 | 2.576 | 2.807 |