Question 2.92: If FB = 560 N and FC = 700 N, determine the magnitude and co...
If F_{B} = 560 N and F_{C} = 700 N, determine the magnitude and coordinate direction angles of the resultant force acting on the flag pole.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
Force Vectors: The unit vectors \mathbf{u}_B and \mathbf{u}_C of \mathbf{F}_B and \mathbf{F}_C must be determined first. From Fig. a
\mathbf{u}_B=\frac{\mathbf{r}_B}{r_B}=\frac{(2-0) \mathbf{i}+(-3-0) \mathbf{j}+(0-6) \mathbf{k}}{\sqrt{(2-0)^2+(-3-0)^2+(0-6)^2}}=\frac{2}{7} \mathbf{i}-\frac{3}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}\mathbf{u}_C=\frac{\mathbf{r}_C}{r_C}=\frac{(3-0) \mathbf{i}+(2-0) \mathbf{j}+(0-6) \mathbf{k}}{\sqrt{(3-0)^2+(2-0)^2+(0-6)^2}}=\frac{3}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}
Thus, the force vectors \mathbf{F}_B and \mathbf{F}_C are given by
\mathbf{F}_B=F_B \mathbf{u}_B=560\left(\frac{2}{7} \mathbf{i}-\frac{3}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}\right)=\{160 \mathbf{i}-240 \mathbf{j}-480 \mathbf{k}\} \mathrm{N}\mathbf{F}_C=F_C \mathbf{u}_C=700\left(\frac{3}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}\right)=\{300 \mathbf{i}+200 \mathbf{j}-600 \mathbf{k}\} \mathrm{N}
Resultant Force:
\mathbf{F}_R=\mathbf{F}_B+\mathbf{F}_C=(160 \mathbf{i}-240 \mathbf{j}-480 \mathbf{k})+(300 \mathbf{i}+200 \mathbf{j}-600 \mathbf{k})= {460 i – 40 j + 1080 k} N
The magnitude of \mathbf{F}_R is
F_R=\sqrt{\left(F_R\right)_x^2+\left(F_R\right)_y^2+\left(F_R\right)_z^2}=\sqrt{(460)^2+(-40)^2+(-1080)^2}=1174.56 \mathrm{~N}=1.17 \mathrm{kN}
The coordinate direction angles of \mathbf{F}_R is
\alpha=\cos ^{-1}\left[\frac{\left(F_R\right)_x}{F_R}\right]=\cos ^{-1}\left(\frac{460}{1174.56}\right)=66.9^{\circ}\beta=\cos ^{-1}\left[\frac{\left(F_R\right)_y}{F_R}\right]=\cos ^{-1}\left(\frac{-40}{1174.56}\right)=92.0^{\circ}
\gamma=\cos ^{-1}\left[\frac{\left(F_R\right)_z}{F_R}\right]=\cos ^{-1}\left(\frac{-1080}{1174.56}\right)=157^{\circ}

Related Answered Questions
Question: 2.108
Verified Answer:
Force Vectors: The unit vectors u _B, u _C ...
Question: 2.57
Verified Answer:
Scalar Notation: Summing the force components alge...
Question: 2.136
Verified Answer:
r _{A C}=(-3 i +4 j -4 k ), \quad r_{A C}=\...
Question: 2.137
Verified Answer:
\begin{aligned}& r _{C A}=3 i -4 j +4 k...
Question: 2.123
Verified Answer:
Position Vectors: The position vectors r _{...
Question: 2.122
Verified Answer:
Position Vectors: The position vectors and must be...
Question: 2.121
Verified Answer:
Unit Vectors: The unit vectors and must be determi...
Question: 2.120
Verified Answer:
Unit Vectors:The unit vectors u _{E B}[/lat...
Question: 2.8
Verified Answer:
Parallelogram Law: The parallelogram law of additi...
Question: 2.126
Verified Answer:
Force Vector:
\begin{aligned}u _{F_1...