Question 3.6.11: Apply the formula in (23) to find the inverse of the matrix ...

Apply the formula in (23) to find the inverse of the matrix

\textbf{A} = \left [ \begin{matrix} 1 & 4 & 5 \\ 4 & 2 & 5 \\ -3 & 3 & -1 \end{matrix} \right ]

\textbf{A}^{-1} = \frac{[A_{ij}]^{T}}{|\textbf{A}|},                 (23)

of Example 10, in which we saw that |A| = 29.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First we calculate the cofactors of A, arranging our computations in a natural 3 × 3 array:

A_{11}= + \begin{vmatrix} 2 & 5 \\ 3 & -1 \end{vmatrix} = -17 , A_{12}= – \begin{vmatrix} 4 & 5 \\ -3 & -1 \end{vmatrix}=-11 , A_{13}= +\begin{vmatrix} 4 &2 \\ -3& 3\end{vmatrix} = 18,

 

A_{21}= – \begin{vmatrix} 4 & 5 \\ 3 & -1 \end{vmatrix} = 19 , A_{22}= + \begin{vmatrix} 1 & 5 \\ -3 & -1 \end{vmatrix} = 14 , A_{23}= – \begin{vmatrix} 1 & 4 \\ -3 & 3 \end{vmatrix} = -15 ,

 

A_{31}= + \begin{vmatrix} 4 & 5 \\ 2 & 5 \end{vmatrix} = 10 , A_{32}= – \begin{vmatrix} 1 & 5 \\ 4 & 5 \end{vmatrix} = 15 , A_{33}= + \begin{vmatrix} 1 & 4 \\ 4 & 2 \end{vmatrix} = -14 .

(Note the familiar checkerboard pattern of signs.) Thus the cofactor matrix of A is

[A_{ij}] = \left [ \begin{matrix} -17 & -11 & 18 \\ 19 & 14 & -15 \\ 10 & 15 & -14 \end{matrix} \right ].

Next, we interchange rows and columns to obtain the adjoint matrix

adj A =[A_{ij}]^{T} = \left [ \begin{matrix} -17 & 19 & 10 \\ -11 & 14 & -15 \\ 18 & -15 & -14 \end{matrix} \right ].

Finally, in accord with Eq. (23), we divide by |A| = 29 to get the inverse matrix

A^{-1} = \frac{1}{29} \left [ \begin{matrix} -17 & 19 & 10 \\ -11 & 14 & -15 \\ 18 & -15 & -14 \end{matrix} \right ].

Related Answered Questions

Question: 3.7.7

Verified Answer:

Substitution of the xy-coordinates of each of the ...
Question: 3.7.6

Verified Answer:

Substitution of the xy-coordinates of each of the ...
Question: 3.5.8

Verified Answer:

The coefficient matrix is the matrix A whose inver...
Question: 3.6.10

Verified Answer:

We find that |A| = \left | \begin{matrix} 1...
Question: 3.4.1

Verified Answer:

then A ≠ B because a_{22} = 6, wher...
Question: 3.3.5

Verified Answer:

is row equivalent to the 3 × 3 identity matrix. He...
Question: 3.3.2

Verified Answer:

In Example 3 of Section 3.2 we found the echelon f...