Making a mass balance:
|
Solid (kg/s) |
Liquor (kg/s) |
Total (kg/s) |
Feed |
0.125 |
1.125 |
1.25 |
Product |
0.125 |
0.125 |
0.25 |
Evaporation |
__ |
1 |
1 |
Thus: D_{1}+D_{2}+D_{3}=1.0 kg/s (i)
\sum \Delta T=(T_{0}-T_{3})= (393 – 325) = 68 deg K (ii)
From equation 14.8: 2.5\Delta T_{1}=2.0\Delta T_{2}=1.6\Delta T_{3} (iii)
and from equations (ii) and (iii):
\Delta T_{1} = 18 deg K, \Delta T_{2} = 22 deg K, and \Delta T_{3} = 28 deg K
Modifying the figures to take account of the effect of the feed temperature, it will be assumed that:
\Delta T_{1} = 19 deg K, \Delta T_{2} = 24 deg K, and \Delta T_{3} = 25 deg K
The temperatures in each effect and the corresponding latent heats are then:
T_{0} = 393 K, \lambda _{0} = 2202 kJ/kg
T_{1} = 374 K, \lambda _{1} = 2254 kJ/kg
T_{2} = 350 K, \lambda _{2} = 2315 kJ/kg
T_{3} = 325 K, \lambda _{3} = 2376 kJ/kg
Making a heat balance for each effect:
(1) D_{0}\lambda _{0}=(W-D_{3}-D_{2})C_{p}(T_{1}-T_{2})+D_{1}\lambda _{1}
or 2202D_{0} = (1.25 – D_{2}-D_{3})4.18(374 – 350) + 2254D_{1} (iv)
(2) D_{1}\lambda _{1}=(W-D_{3})C_{p}(T_{2}-T_{3})+D_{2}\lambda _{2}
or 2254D_{1} = (1.25 – D_{3})4.18(350 – 325) + 2315D_{2} (v)
(3) D_{2}\lambda _{2}=WC_{p}(T_{3}-T_{f})+D_{3}\lambda _{3}
or 2315D_{2} = (1.25 × 4.18)(325 – 297) + 2376D_{3} (vi)
Solving equations (i), (iv), (v), and (vi) simultaneously:
D_{0} = 0.432 kg/s, D_{1} = 0.393 kg/s, D_{2} = 0.339 kg/s, and D_{3} = 0.268 kg/s.
The areas of transfer surface are:
A_{1}=D_{0}\lambda _{0}/U_{1}\Delta T_{1}= (0.432 × 2202)/(2.5 × 19) = 20.0 m^{2}
A_{2}=D_{1}\lambda _{1}/U_{2}\Delta T_{2}= (0.393 × 2254)/(2.0 × 24) = 18.5 m^{2}
A_{1}=D_{2}\lambda _{2}/U_{3}\Delta T_{3}= (0.268 × 2315)/(1.6 × 25) = 15.5 m^{2}
which are probably sufficiently close for design purposes; the mean area being 18.0 m^{2}
The steam consumption is therefore, D_{0} = 0.432 kg/s
The temperatures in each effect are: (1) 374 K, (2) 350 K, and (3) 325 K.
equation 14.8: U_{1}\Delta T_{1}=U_{2}\Delta T_{2}=U_{3}\Delta T_{3}