Question 6.2: In the CE amplifier of Fig. 6-5(b), let hie = 1 kΩ, hre = 10......

In the CE amplifier of Fig. 6-5(b), let h_{i e} = 1\,\mathrm{k\Omega},  h_{r e} = 10^{-4},h_{f e} = 100,  h_{o e} = 12\,\mu\mathrm{S}, and R_{L}=2\,\mathrm{k\Omega}. (These are typical CE amplifier values.) Find expressions for the   (a) current-gain ratio A_i,   (b) voltage-gain ratio A_v,   (c) input impedance Z_{in}, and   (d) output impedance Z_o.   (e) Evaluate this typical CE amplifier.

بدون عنوان
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) By current division at node C,
i_{L} = {\frac{1/h_{o e}}{1/h_{o e}  +  R_{L}}}(-h_{f e}i_{b})                (6.42)

and                     A_{i} = {\frac{i_{L}}{i_{b}}} = -{\frac{h_{f e}}{1  +  h_{o e} R_{L}}} = -{\frac{100}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = -97.7                (6.43)

Note that A_{i} \approx -h_{i e}, where the minus sign indicates a 180° phase shift between input and output currents.
(b)   By KVL around B, E mesh,
v_{s}=v_{b e}=h_{i e}i_{b}+h_{r e}v_{c e}                (6.44)

Ohm’s law applied to the output network requires that
v_{c e} = -h_{fe}i_{b}\left(\frac{1}{h_{o e}}\|R_{L}\right) = \frac{-h_{fe}R_{L}i_{b}}{1  +  h_{o e}R_{L}}                (6.45)

Solving (6.45) for i_b, substituting the result into (6.44), and rearranging yield

A_{v} = {\frac{v_{s}}{v_{c e}}} = -{\frac{h_{fe}R_{L}}{h_{ie}  +  R_{L}(h_{ie} h_{o e}  –  h_{fe}h_{r e})}}
= -{\frac{(100)(2  \times  10^{3})}{1  \times  10^{3}  +  (2  \times  10^{3})[(1  \times  10^{3})(12  \times  10^{-6})  –  (100)(1  \times  10^{-4})]}} = -199.2                 (6.46)

Observe that A_{v} \approx -h_{fe}R_{L}/h_{ie}, where the minus sign indicates a 180° phase shift between input and output voltages.

(c) Substituting (6.45) into (6.44) and rearranging yield
Z_{\mathrm{in}} = {\frac{v_{s}}{i_{b}}} = h_{i e}  –  {\frac{h_{re}h_{f e}R_{L}}{1  +  h_{oe}R_{L}}} = 1  \times  10^{3}  –  {\frac{(1  \times  10^{-4})(100)(2   \times  10^{3})}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = 980.5  \Omega                 (6.47)

Note that for typical CE amplifier values, Z_{\mathrm{in}} \approx h_{i e}.

(d) We deactivate (short) v_s and replace R_L with a driving-point source so that v_{dp} = v_{ce}.   Then, for the input mesh,
Ohm’s law requires that
i_{b} = -{\frac{h_{r e}}{h_{i e}}}\,v_{d p}                 (6.48)

However, at node C (with, now, i_{c} = i_{d p}), KCL yields
i_{c} = i_{d p} = h_{fe}i_{b} + h_{o c}v_{d p}                 (6.49)

Using (6.48) in (6.49) and rearranging then yield

Z_{o} = {\frac{v_{d p}}{i_{d p}}} = {\frac{1}{h_{o e}  –  h_{fe}h_{r e}/h_{i e}}} = {\frac{1}{12  \times  10^{-6}  –  (100)(1  \times  10^{-4})/(1  \times  10^{3})}} = 500\, Ω                 (6.50)

The output impedance is increased by feedback due to the presence of the controlled source h_{re}v_{ce}.

(e) Based on the typical values of this example, the characteristics of the CE amplifier can be summarized as follows:
1. Large current gain
2. Large voltage gain
3. Large power gain (A_iA_v)
4. Current and voltage phase shifts of 180°
5. Moderate input impedance
6. Moderate output impedance

Related Answered Questions