Question 1.7: The pascal (Pa) is actually a very small unit of pressure. T...

The pascal (Pa) is actually a very small unit of pressure. To show this, convert 1~{\mathrm{Pa}}=1~{\mathrm{N}}/{\mathrm{m}}^{2}~\mathrm{to}~\mathrm{lb}/\mathrm{ft}^{2}. Atmospheric pressure at sea level is 14.7 lb/in² . How many pascals is this?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Table 1–2, we have

1\;\mathrm{Pa}={\frac{1\;\mathrm{N}}{\bf m^{2}}}\bigg({\frac{1\;\mathrm{lb}}{4.4482\;\mathrm{N}}}\bigg)\bigg({\frac{0.3048^{2}\,\mathrm{m}^{2}}{1\;\mathrm{ft}^{2}}}\bigg)=20.9\bigg(10^{-3}\bigg)\;\mathrm{lb/ft}^{2}

 

1~{\mathrm{ATM}}={\frac{14.7~\mathrm{lb}}{\mathrm{in}^{2}}}\left({\frac{4.448~\mathrm{N}}{1~\mathrm{lb}}}\right)\left({\frac{144~\mathrm{in}^{2}}{1~\mathrm{ft}^{2}}}\right)\left({\frac{1\;\mathrm{ft}^{2}}{0.3048^{2}\,\mathrm{m}^{2}}}\right)

 

=\;101.3\Big(10^{3}\Big)\;\mathrm{N/m^{2}}

 

=\;101\;{\mathrm{kPa}}

Related Answered Questions

Question: 1.2

Verified Answer:

\left(4.70  \mathrm{slug} /  \mathrm{ft}^3\...